Land use and land cover classification for change detection studies using convolutional neural network

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
V. Pushpalatha , P.B. Mallikarjuna , H.N. Mahendra , S. Rama Subramoniam , S. Mallikarjunaswamy
{"title":"Land use and land cover classification for change detection studies using convolutional neural network","authors":"V. Pushpalatha ,&nbsp;P.B. Mallikarjuna ,&nbsp;H.N. Mahendra ,&nbsp;S. Rama Subramoniam ,&nbsp;S. Mallikarjunaswamy","doi":"10.1016/j.acags.2025.100227","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient land use land cover (LULC) classification is crucial for environmental monitoring, urban planning, and resource management. This study investigates LULC changes in Nanjangud taluk, Mysuru district, Karnataka, India, using remote sensing (RS) and geographic information systems (GIS). This paper mainly focuses on the classification and change detection analysis of LULC in 2010 and 2020 using linear imaging self-scanning sensor-III (LISS-III) remote sensing images. Traditional methods for LULC classification involve manual interpretation of satellite images, which provides lower accuracy. Therefore, this paper proposed the Convolutional Neural Network (CNN)-based deep learning method for LULC classification. The main objective of the research work is to perform an efficient LULC classification for the change detection study of the Nanjagud taluk using the classified maps of the years 2010 and 2020. The experimental results indicate that the proposed classification method is outperformed, with an overall accuracy of 94.08% for the 2010 data and 95.30% for the 2020 data. Further, change detection analysis has been carried out using classified maps and the results show that built-up areas increased by 8.34 sq. km (0.83%), agricultural land expanded by 2.21 sq. km (0.23%), and water bodies grew by 3.31 sq. km (0.35%). Conversely, forest cover declined by 1.49 sq. km (0.15%), and other land uses reduced by 11.93 sq. km (1.22%) over the decade.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"25 ","pages":"Article 100227"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197425000096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient land use land cover (LULC) classification is crucial for environmental monitoring, urban planning, and resource management. This study investigates LULC changes in Nanjangud taluk, Mysuru district, Karnataka, India, using remote sensing (RS) and geographic information systems (GIS). This paper mainly focuses on the classification and change detection analysis of LULC in 2010 and 2020 using linear imaging self-scanning sensor-III (LISS-III) remote sensing images. Traditional methods for LULC classification involve manual interpretation of satellite images, which provides lower accuracy. Therefore, this paper proposed the Convolutional Neural Network (CNN)-based deep learning method for LULC classification. The main objective of the research work is to perform an efficient LULC classification for the change detection study of the Nanjagud taluk using the classified maps of the years 2010 and 2020. The experimental results indicate that the proposed classification method is outperformed, with an overall accuracy of 94.08% for the 2010 data and 95.30% for the 2020 data. Further, change detection analysis has been carried out using classified maps and the results show that built-up areas increased by 8.34 sq. km (0.83%), agricultural land expanded by 2.21 sq. km (0.23%), and water bodies grew by 3.31 sq. km (0.35%). Conversely, forest cover declined by 1.49 sq. km (0.15%), and other land uses reduced by 11.93 sq. km (1.22%) over the decade.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信