Irrigated rice-field mapping in Brazil using phenological stage information and optical and microwave remote sensing

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Andre Dalla Bernardina Garcia , MD Samiul Islam , Victor Hugo Rohden Prudente , Ieda Del’Arco Sanches , Irene Cheng
{"title":"Irrigated rice-field mapping in Brazil using phenological stage information and optical and microwave remote sensing","authors":"Andre Dalla Bernardina Garcia ,&nbsp;MD Samiul Islam ,&nbsp;Victor Hugo Rohden Prudente ,&nbsp;Ieda Del’Arco Sanches ,&nbsp;Irene Cheng","doi":"10.1016/j.acags.2025.100223","DOIUrl":null,"url":null,"abstract":"<div><div>Irrigated rice-field mapping methodologies have been rapidly evolving as a result of advanced remote sensing (RS) technology. However, current methods rely on extensive time-series data and a wide range of multi-spectral bands. These methods often struggle with classification accuracy with contaminated satellite data due to environmental factors or acquisition device constraints, e.g., cloud cover, shadows, noise, and the temporal and spectral resolution trade-off. Our goal is map irrigated rice-field by using a suitable satellite image band composition instead of time-series data. We divide the growth cycle into different rice phenological stages: beginning, middle and end of season, as well as the season transition periods. Near-infrared (NIR), short-wave infrared (SWIR) and red bands of MultiSpectral Instrument - MSI/Sentinel-2 (optical RS), along with polarizations of VV (vertical–vertical) and VH (vertical–horizontal) of Sentinel-1 C-band Synthetic Aperture Radar (SAR) (microwave RS), were used to create ten different false-color image composites. Ground truth maps from two consecutive growth seasons (2017/2018 and 2018/2019) served as references. We applied a modified version of the Fusion Adaptive Patch Network (FAPNET), named as Patch Layer Adaptive Network (PLANET) convolutional neural network (CNN) to obtain binary rice mapping, which was evaluated using the traditional Mean Intersection over Union (MIoU) and Dice coefficient. Analytic results show that the end of season is the most suitable for obtaining a reliable classification based on optical and SAR sensors. Although complex rice-field pose challenges, our predictions consistently scored a MIoU above 0.9. We conclude that choosing the right phenological stage for rice mapping combined with deep learning model can greatly improve the classification results. These results indicate that the choice of composition significantly impacts classification accuracy, especially in more complex environments.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"25 ","pages":"Article 100223"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197425000059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Irrigated rice-field mapping methodologies have been rapidly evolving as a result of advanced remote sensing (RS) technology. However, current methods rely on extensive time-series data and a wide range of multi-spectral bands. These methods often struggle with classification accuracy with contaminated satellite data due to environmental factors or acquisition device constraints, e.g., cloud cover, shadows, noise, and the temporal and spectral resolution trade-off. Our goal is map irrigated rice-field by using a suitable satellite image band composition instead of time-series data. We divide the growth cycle into different rice phenological stages: beginning, middle and end of season, as well as the season transition periods. Near-infrared (NIR), short-wave infrared (SWIR) and red bands of MultiSpectral Instrument - MSI/Sentinel-2 (optical RS), along with polarizations of VV (vertical–vertical) and VH (vertical–horizontal) of Sentinel-1 C-band Synthetic Aperture Radar (SAR) (microwave RS), were used to create ten different false-color image composites. Ground truth maps from two consecutive growth seasons (2017/2018 and 2018/2019) served as references. We applied a modified version of the Fusion Adaptive Patch Network (FAPNET), named as Patch Layer Adaptive Network (PLANET) convolutional neural network (CNN) to obtain binary rice mapping, which was evaluated using the traditional Mean Intersection over Union (MIoU) and Dice coefficient. Analytic results show that the end of season is the most suitable for obtaining a reliable classification based on optical and SAR sensors. Although complex rice-field pose challenges, our predictions consistently scored a MIoU above 0.9. We conclude that choosing the right phenological stage for rice mapping combined with deep learning model can greatly improve the classification results. These results indicate that the choice of composition significantly impacts classification accuracy, especially in more complex environments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信