Accurate recognition of micromorphology images of epoxy coatings for deep-sea environments based on a deep learning super-resolution method

JiaQi Pan , Furou Liu , Jia Feng , Fandi Meng , Yufan Chen , Jianning Chi , Zelan Li , Jie Li , Li Liu
{"title":"Accurate recognition of micromorphology images of epoxy coatings for deep-sea environments based on a deep learning super-resolution method","authors":"JiaQi Pan ,&nbsp;Furou Liu ,&nbsp;Jia Feng ,&nbsp;Fandi Meng ,&nbsp;Yufan Chen ,&nbsp;Jianning Chi ,&nbsp;Zelan Li ,&nbsp;Jie Li ,&nbsp;Li Liu","doi":"10.1016/j.corcom.2024.07.002","DOIUrl":null,"url":null,"abstract":"<div><div>Crack initiation and extension occur in organic coatings during service in deep-sea environments. However, when extracting detailed crack information from SEM images of epoxy mica coatings at different time periods in a simulated deep-sea fluid-hydraulic environment, uninteresting background regions are treated equally, resulting in unnecessary computational redundancy. To address the relatively blurred edges and unclear textures of SEM images, a crack image super-resolution network based on global mixed attention (GMA-net) is proposed for application to SEM images of organic coatings. The recognition results of the images processed with GMA-net were compared with those of the original images and the images processed with bicubic method, respectively. The results show that this method not only refrains from destroying the clarity of the original images but also greatly outperforms bicubic method in terms of precision, recall, mAP50 and mPA50–95, which are improved by approximately 23.1 %, 32.4 %, 36.4 % and 26.7 %, respectively. This method effectively highlights the details and improves the recognition accuracy of the edge texture with the aim of providing a good basis for subsequent recognition and even lifetime prediction studies.</div></div>","PeriodicalId":100337,"journal":{"name":"Corrosion Communications","volume":"19 ","pages":"Pages 14-27"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667266924000501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Crack initiation and extension occur in organic coatings during service in deep-sea environments. However, when extracting detailed crack information from SEM images of epoxy mica coatings at different time periods in a simulated deep-sea fluid-hydraulic environment, uninteresting background regions are treated equally, resulting in unnecessary computational redundancy. To address the relatively blurred edges and unclear textures of SEM images, a crack image super-resolution network based on global mixed attention (GMA-net) is proposed for application to SEM images of organic coatings. The recognition results of the images processed with GMA-net were compared with those of the original images and the images processed with bicubic method, respectively. The results show that this method not only refrains from destroying the clarity of the original images but also greatly outperforms bicubic method in terms of precision, recall, mAP50 and mPA50–95, which are improved by approximately 23.1 %, 32.4 %, 36.4 % and 26.7 %, respectively. This method effectively highlights the details and improves the recognition accuracy of the edge texture with the aim of providing a good basis for subsequent recognition and even lifetime prediction studies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信