Sliced skein algebras and geometric Kauffman bracket

IF 1.5 1区 数学 Q1 MATHEMATICS
Charles D. Frohman , Joanna Kania-Bartoszynska , Thang T.Q. Lê
{"title":"Sliced skein algebras and geometric Kauffman bracket","authors":"Charles D. Frohman ,&nbsp;Joanna Kania-Bartoszynska ,&nbsp;Thang T.Q. Lê","doi":"10.1016/j.aim.2025.110118","DOIUrl":null,"url":null,"abstract":"<div><div>The sliced skein algebra of a closed surface of genus <em>g</em> with <em>m</em> punctures, <span><math><mi>S</mi><mo>=</mo><msub><mrow><mi>Σ</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>m</mi></mrow></msub></math></span>, is the quotient of the Kauffman bracket skein algebra <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>ξ</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span> corresponding to fixing the scalar values of its peripheral curves. We show that the sliced skein algebra of a finite type surface is a domain if the ground ring is a domain. When the quantum parameter <em>ξ</em> is a root of unity we calculate the center of the sliced skein algebra and its PI-degree. Among applications we show that any smooth point of a sliced character variety is an Azumaya point of the skein algebra <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>ξ</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span>.</div><div>For any <span><math><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span>-representation <em>ρ</em> of the fundamental group of an oriented connected 3-manifold <em>M</em> and a root of unity <em>ξ</em> with the order of <span><math><msup><mrow><mi>ξ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> odd, we introduce the <em>ρ</em>-reduced skein module <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>ξ</mi><mo>,</mo><mi>ρ</mi></mrow></msub><mo>(</mo><mi>M</mi><mo>)</mo></math></span>. We show that <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>ξ</mi><mo>,</mo><mi>ρ</mi></mrow></msub><mo>(</mo><mi>M</mi><mo>)</mo></math></span> has dimension 1 when <em>M</em> is closed and <em>ρ</em> is irreducible. We also show that if <em>ρ</em> is irreducible the <em>ρ</em>-reduced skein module of a handlebody, as a module over the skein algebra of its boundary, is simple and has the dimension equal to the PI-degree of the skein algebra of its boundary.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"463 ","pages":"Article 110118"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825000167","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The sliced skein algebra of a closed surface of genus g with m punctures, S=Σg,m, is the quotient of the Kauffman bracket skein algebra Sξ(S) corresponding to fixing the scalar values of its peripheral curves. We show that the sliced skein algebra of a finite type surface is a domain if the ground ring is a domain. When the quantum parameter ξ is a root of unity we calculate the center of the sliced skein algebra and its PI-degree. Among applications we show that any smooth point of a sliced character variety is an Azumaya point of the skein algebra Sξ(S).
For any SL2(C)-representation ρ of the fundamental group of an oriented connected 3-manifold M and a root of unity ξ with the order of ξ2 odd, we introduce the ρ-reduced skein module Sξ,ρ(M). We show that Sξ,ρ(M) has dimension 1 when M is closed and ρ is irreducible. We also show that if ρ is irreducible the ρ-reduced skein module of a handlebody, as a module over the skein algebra of its boundary, is simple and has the dimension equal to the PI-degree of the skein algebra of its boundary.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信