Bumpless pipe dreams meet puzzles

IF 1.5 1区 数学 Q1 MATHEMATICS
Neil J.Y. Fan , Peter L. Guo , Rui Xiong
{"title":"Bumpless pipe dreams meet puzzles","authors":"Neil J.Y. Fan ,&nbsp;Peter L. Guo ,&nbsp;Rui Xiong","doi":"10.1016/j.aim.2025.110113","DOIUrl":null,"url":null,"abstract":"<div><div>Knutson and Zinn-Justin recently found a puzzle rule for the expansion of the product <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>⋅</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> of two double Grothendieck polynomials indexed by permutations with separated descents. We establish its triple Schubert calculus version in the sense of Knutson and Tao, namely, a formula for expanding <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>⋅</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> in different secondary variables. Our rule is formulated in terms of pipe puzzles, incorporating the structures of both bumpless pipe dreams and classical puzzles. As direct applications, we recover the separated-descent puzzle formula by Knutson and Zinn-Justin (by setting <span><math><mi>y</mi><mo>=</mo><mi>t</mi></math></span>) and the bumpless pipe dream model of double Grothendieck polynomials by Weigandt (by setting <span><math><mi>v</mi><mo>=</mo><mi>id</mi></math></span> and <span><math><mi>x</mi><mo>=</mo><mi>t</mi></math></span>). Moreover, we utilize the formula to partially confirm a positivity conjecture of Kirillov about applying a skew operator to a Schubert polynomial.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"463 ","pages":"Article 110113"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825000118","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Knutson and Zinn-Justin recently found a puzzle rule for the expansion of the product Gu(x,t)Gv(x,t) of two double Grothendieck polynomials indexed by permutations with separated descents. We establish its triple Schubert calculus version in the sense of Knutson and Tao, namely, a formula for expanding Gu(x,y)Gv(x,t) in different secondary variables. Our rule is formulated in terms of pipe puzzles, incorporating the structures of both bumpless pipe dreams and classical puzzles. As direct applications, we recover the separated-descent puzzle formula by Knutson and Zinn-Justin (by setting y=t) and the bumpless pipe dream model of double Grothendieck polynomials by Weigandt (by setting v=id and x=t). Moreover, we utilize the formula to partially confirm a positivity conjecture of Kirillov about applying a skew operator to a Schubert polynomial.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信