{"title":"Heuristic approaches for a multi-mode resource availability cost problem in aircraft manufacturing","authors":"Jan Bierbüße , Lars Mönch , Alexander Biele","doi":"10.1016/j.cor.2024.106888","DOIUrl":null,"url":null,"abstract":"<div><div>A multi-mode time-constrained project scheduling problem with generalized temporal constraints arising in aircraft manufacturing is studied in the paper. We propose a priority rule-based heuristic (PRH) and a biased random-key genetic algorithm (BRKGA) for its solution. A serial generation scheme (SGS) is used for computing schedules from a priority order of the tasks with given resource capacities and mode assignments. The SGS cannot guarantee that the maximum project duration and maximum time lags are respected. Starting with the highest possible resource capacities, the PRH performs the SGS in a repeated manner, reducing the least used resource capacity by one unit until the schedule becomes infeasible. Different priority rules are used for determining both mode assignments and task priority orders. We encode these two decisions as well as the resource capacities in the BRKGA and apply the SGS for decoding. Project duration and maximum time lag violations are penalized in the fitness function. Extensive computational experiments based on problem instances motivated by settings found at a large aircraft manufacturer demonstrate that the BRKGA outperforms the PRH under almost all experimental conditions, especially for problem instances with more complex networks and shorter maximum project durations.</div></div>","PeriodicalId":10542,"journal":{"name":"Computers & Operations Research","volume":"176 ","pages":"Article 106888"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Operations Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305054824003605","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
A multi-mode time-constrained project scheduling problem with generalized temporal constraints arising in aircraft manufacturing is studied in the paper. We propose a priority rule-based heuristic (PRH) and a biased random-key genetic algorithm (BRKGA) for its solution. A serial generation scheme (SGS) is used for computing schedules from a priority order of the tasks with given resource capacities and mode assignments. The SGS cannot guarantee that the maximum project duration and maximum time lags are respected. Starting with the highest possible resource capacities, the PRH performs the SGS in a repeated manner, reducing the least used resource capacity by one unit until the schedule becomes infeasible. Different priority rules are used for determining both mode assignments and task priority orders. We encode these two decisions as well as the resource capacities in the BRKGA and apply the SGS for decoding. Project duration and maximum time lag violations are penalized in the fitness function. Extensive computational experiments based on problem instances motivated by settings found at a large aircraft manufacturer demonstrate that the BRKGA outperforms the PRH under almost all experimental conditions, especially for problem instances with more complex networks and shorter maximum project durations.
期刊介绍:
Operations research and computers meet in a large number of scientific fields, many of which are of vital current concern to our troubled society. These include, among others, ecology, transportation, safety, reliability, urban planning, economics, inventory control, investment strategy and logistics (including reverse logistics). Computers & Operations Research provides an international forum for the application of computers and operations research techniques to problems in these and related fields.