{"title":"Inverse scattering transform and the soliton solution of the discrete Ablowitz–Ladik equation","authors":"Yin Li , Meisen Chen","doi":"10.1016/j.physd.2024.134517","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the discrete Ablowitz–Ladik equation via the Riemann-Hilbert (RH) approach. By its matrix spectral problem and Lax pair, the Jost solution and the reflection coefficients are constructed. Based on the zero curvature formulation, we assume that there are higher-order zeros for the scattering coefficient <span><math><mrow><mi>a</mi><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></math></span>, and construct the corresponding RH problem. The inverse scattering transform of the discrete Ablowitz–Ladik equation is presented by the matrix spectral problem, the reconstruction formula and the RH problem, which enables us to obtain the multiple-pole solutions. And then the dynamics of one-and two-soliton solutions are discussed and presented graphically. Compared with simple-pole solutions, multiple-pole solutions possess more complicated profiles.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"472 ","pages":"Article 134517"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924004676","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies the discrete Ablowitz–Ladik equation via the Riemann-Hilbert (RH) approach. By its matrix spectral problem and Lax pair, the Jost solution and the reflection coefficients are constructed. Based on the zero curvature formulation, we assume that there are higher-order zeros for the scattering coefficient , and construct the corresponding RH problem. The inverse scattering transform of the discrete Ablowitz–Ladik equation is presented by the matrix spectral problem, the reconstruction formula and the RH problem, which enables us to obtain the multiple-pole solutions. And then the dynamics of one-and two-soliton solutions are discussed and presented graphically. Compared with simple-pole solutions, multiple-pole solutions possess more complicated profiles.
期刊介绍:
Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.