{"title":"Non-optimal levels of some reducible mod p modular representations","authors":"Shaunak V. Deo","doi":"10.1016/j.aim.2024.110074","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>p</mi><mo>≥</mo><mn>5</mn></math></span> be a prime, <em>N</em> be an integer not divisible by <em>p</em>, <span><math><msub><mrow><mover><mrow><mi>ρ</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mn>0</mn></mrow></msub></math></span> be a reducible, odd and semi-simple representation of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>Q</mi><mo>,</mo><mi>N</mi><mi>p</mi></mrow></msub></math></span> of dimension 2 and <span><math><mo>{</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>}</mo></math></span> be a set of primes not dividing <em>Np</em>. After assuming that a certain Selmer group has dimension at most 1, we find sufficient conditions for the existence of a cuspidal eigenform <em>f</em> of level <span><math><mi>N</mi><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and appropriate weight lifting <span><math><msub><mrow><mover><mrow><mi>ρ</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mn>0</mn></mrow></msub></math></span> such that <em>f</em> is new at every <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. Moreover, suppose <span><math><mi>p</mi><mo>|</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub><mo>+</mo><mn>1</mn></math></span> for some <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>i</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≤</mo><mi>r</mi></math></span>. Then, after assuming that a certain Selmer group vanishes, we find sufficient conditions for the existence of a cuspidal eigenform of level <span><math><mi>N</mi><msubsup><mrow><mi>ℓ</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mn>2</mn></mrow></msubsup><msub><mrow><mo>∏</mo></mrow><mrow><mi>j</mi><mo>≠</mo><msub><mrow><mi>i</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> and appropriate weight which is new at every <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and which lifts <span><math><msub><mrow><mover><mrow><mi>ρ</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mn>0</mn></mrow></msub></math></span>. As a consequence, we prove a conjecture of Billerey–Menares in many cases.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"461 ","pages":"Article 110074"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824005905","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a prime, N be an integer not divisible by p, be a reducible, odd and semi-simple representation of of dimension 2 and be a set of primes not dividing Np. After assuming that a certain Selmer group has dimension at most 1, we find sufficient conditions for the existence of a cuspidal eigenform f of level and appropriate weight lifting such that f is new at every . Moreover, suppose for some . Then, after assuming that a certain Selmer group vanishes, we find sufficient conditions for the existence of a cuspidal eigenform of level and appropriate weight which is new at every and which lifts . As a consequence, we prove a conjecture of Billerey–Menares in many cases.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.