Varopoulos extensions in domains with Ahlfors-regular boundaries and applications to Boundary Value Problems for elliptic systems with L∞ coefficients

IF 1.5 1区 数学 Q1 MATHEMATICS
Mihalis Mourgoglou , Thanasis Zacharopoulos
{"title":"Varopoulos extensions in domains with Ahlfors-regular boundaries and applications to Boundary Value Problems for elliptic systems with L∞ coefficients","authors":"Mihalis Mourgoglou ,&nbsp;Thanasis Zacharopoulos","doi":"10.1016/j.aim.2024.110054","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, be an open set with <em>s</em>-Ahlfors regular boundary ∂Ω, for some <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>n</mi><mo>]</mo></math></span>, such that either <span><math><mi>s</mi><mo>=</mo><mi>n</mi></math></span> and Ω is a corkscrew domain with the pointwise John condition, or <span><math><mi>s</mi><mo>&lt;</mo><mi>n</mi></math></span> and <span><math><mi>Ω</mi><mo>=</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>∖</mo><mi>E</mi></math></span>, for some <em>s</em>-Ahlfors regular set <span><math><mi>E</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>. In this paper we provide a unifying method to construct Varopoulos type extensions of BMO and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> boundary functions. In particular, we show that a) if <span><math><mi>f</mi><mo>∈</mo><mrow><mi>BMO</mi></mrow><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></math></span>, there exists <span><math><mi>F</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> such that <span><math><mtext>dist</mtext><mo>(</mo><mi>x</mi><mo>,</mo><msup><mrow><mi>Ω</mi></mrow><mrow><mi>c</mi></mrow></msup><mo>)</mo><mo>|</mo><mi>∇</mi><mi>F</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo></math></span> is uniformly bounded in Ω and the Carleson functional of <span><math><mtext>dist</mtext><msup><mrow><mo>(</mo><mi>x</mi><mo>,</mo><msup><mrow><mi>Ω</mi></mrow><mrow><mi>c</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>s</mi><mo>−</mo><mi>n</mi></mrow></msup><mo>|</mo><mi>∇</mi><mi>F</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo></math></span> as well the sharp non-tangential maximal function of <em>F</em> are uniformly bounded on ∂Ω with norms controlled by the BMO-norm of <em>f</em>, and <span><math><mi>F</mi><mo>→</mo><mi>f</mi></math></span> in a certain non-tangential sense <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><msub><mrow><mo>|</mo></mrow><mrow><mo>∂</mo><mi>Ω</mi></mrow></msub></math></span>-almost everywhere; b) if <span><math><mover><mrow><mi>f</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></math></span>, <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>≤</mo><mo>∞</mo></math></span>, there exists <span><math><mover><mrow><mi>F</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> such that the non-tangential maximal functions of <span><math><mover><mrow><mi>F</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> and <span><math><mtext>dist</mtext><mo>(</mo><mo>⋅</mo><mo>,</mo><msup><mrow><mi>Ω</mi></mrow><mrow><mi>c</mi></mrow></msup><mo>)</mo><mo>|</mo><mi>∇</mi><mover><mrow><mi>F</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>|</mo></math></span> as well as the Carleson functional of <span><math><mtext>dist</mtext><msup><mrow><mo>(</mo><mo>⋅</mo><mo>,</mo><msup><mrow><mi>Ω</mi></mrow><mrow><mi>c</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>s</mi><mo>−</mo><mi>n</mi></mrow></msup><mo>|</mo><mi>∇</mi><mover><mrow><mi>F</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>|</mo></math></span> are in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></math></span> with norms controlled by the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-norm of <span><math><mover><mrow><mi>f</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span>, and <span><math><mover><mrow><mi>F</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>→</mo><mover><mrow><mi>f</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> in some non-tangential sense <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><msub><mrow><mo>|</mo></mrow><mrow><mo>∂</mo><mi>Ω</mi></mrow></msub></math></span>-almost everywhere. If, in addition, the boundary function is Lipschitz with compact support, then both <em>F</em> and <span><math><mover><mrow><mi>F</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> can be constructed so that they are also Lipschitz on <span><math><mover><mrow><mi>Ω</mi></mrow><mo>‾</mo></mover></math></span> and converge to the boundary data continuously. The latter results hold without the additional assumption of the pointwise John condition. Finally, for elliptic systems of equations in divergence form with merely bounded complex-valued coefficients, we show some connections between the solvability of Poisson problems with interior data in the appropriate Carleson or tent spaces and the solvability of Dirichlet problem with <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> and BMO boundary data.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"461 ","pages":"Article 110054"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000187082400570X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let ΩRn+1, n1, be an open set with s-Ahlfors regular boundary ∂Ω, for some s(0,n], such that either s=n and Ω is a corkscrew domain with the pointwise John condition, or s<n and Ω=Rn+1E, for some s-Ahlfors regular set ERn+1. In this paper we provide a unifying method to construct Varopoulos type extensions of BMO and Lp boundary functions. In particular, we show that a) if fBMO(Ω), there exists FC(Ω) such that dist(x,Ωc)|F(x)| is uniformly bounded in Ω and the Carleson functional of dist(x,Ωc)sn|F(x)| as well the sharp non-tangential maximal function of F are uniformly bounded on ∂Ω with norms controlled by the BMO-norm of f, and Ff in a certain non-tangential sense Hs|Ω-almost everywhere; b) if f¯Lp(Ω), 1<p, there exists F¯C(Ω) such that the non-tangential maximal functions of F¯ and dist(,Ωc)|F¯| as well as the Carleson functional of dist(,Ωc)sn|F¯| are in Lp(Ω) with norms controlled by the Lp-norm of f¯, and F¯f¯ in some non-tangential sense Hs|Ω-almost everywhere. If, in addition, the boundary function is Lipschitz with compact support, then both F and F¯ can be constructed so that they are also Lipschitz on Ω and converge to the boundary data continuously. The latter results hold without the additional assumption of the pointwise John condition. Finally, for elliptic systems of equations in divergence form with merely bounded complex-valued coefficients, we show some connections between the solvability of Poisson problems with interior data in the appropriate Carleson or tent spaces and the solvability of Dirichlet problem with Lp and BMO boundary data.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信