Benjamin Biaggi , Chia-Yu Chang , Jan Draisma , Filip Rupniewski
{"title":"Border subrank via a generalised Hilbert-Mumford criterion","authors":"Benjamin Biaggi , Chia-Yu Chang , Jan Draisma , Filip Rupniewski","doi":"10.1016/j.aim.2024.110077","DOIUrl":null,"url":null,"abstract":"<div><div>We show that the border subrank of a sufficiently general tensor in <span><math><msup><mrow><mo>(</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow><mrow><mo>⊗</mo><mi>d</mi></mrow></msup></math></span> is <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>/</mo><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>)</mo></math></span> for <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>. Since this matches the growth rate <span><math><mi>Θ</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>/</mo><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>)</mo></math></span> for the generic (non-border) subrank recently established by Derksen-Makam-Zuiddam, we find that the generic border subrank has the same growth rate. In our proof, we use a generalisation of the Hilbert-Mumford criterion that we believe will be of independent interest.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"461 ","pages":"Article 110077"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824005930","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We show that the border subrank of a sufficiently general tensor in is for . Since this matches the growth rate for the generic (non-border) subrank recently established by Derksen-Makam-Zuiddam, we find that the generic border subrank has the same growth rate. In our proof, we use a generalisation of the Hilbert-Mumford criterion that we believe will be of independent interest.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.