Nonuniqueness of lattice Boltzmann schemes derived from finite difference methods

Eliane Kummer, Stephan Simonis
{"title":"Nonuniqueness of lattice Boltzmann schemes derived from finite difference methods","authors":"Eliane Kummer,&nbsp;Stephan Simonis","doi":"10.1016/j.exco.2024.100171","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, the construction of finite difference schemes from lattice Boltzmann schemes has been rigorously analyzed [Bellotti et al. (2022), Numer. Math. 152, pp. 1–40]. It is thus known that any lattice Boltzmann scheme can be expressed in terms of a corresponding multi-step finite difference scheme on the conserved variables. In the present work, we provide counterexamples for the conjecture that any multi-step finite difference scheme has a unique lattice Boltzmann formulation. Based on that, we indicate the existence of equivalence classes for discretized relaxation systems.</div></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"7 ","pages":"Article 100171"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X24000375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, the construction of finite difference schemes from lattice Boltzmann schemes has been rigorously analyzed [Bellotti et al. (2022), Numer. Math. 152, pp. 1–40]. It is thus known that any lattice Boltzmann scheme can be expressed in terms of a corresponding multi-step finite difference scheme on the conserved variables. In the present work, we provide counterexamples for the conjecture that any multi-step finite difference scheme has a unique lattice Boltzmann formulation. Based on that, we indicate the existence of equivalence classes for discretized relaxation systems.
由有限差分方法导出的晶格Boltzmann格式的非唯一性
最近,格子Boltzmann格式的有限差分格式的构造得到了严格的分析[Bellotti et al. (2022), number。数学。152,第1-40页]。由此可知,任何晶格玻尔兹曼格式都可以用守恒变量上相应的多步有限差分格式来表示。在本工作中,我们提供了关于任何多步有限差分格式具有唯一晶格玻尔兹曼公式的猜想的反例。在此基础上,给出了离散松弛系统的等价类的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信