{"title":"A note on an application of discrete Morse theoretic techniques on the complex of disconnected graphs","authors":"Anupam Mondal , Pritam Chandra Pramanik","doi":"10.1016/j.exco.2025.100174","DOIUrl":null,"url":null,"abstract":"<div><div>Robin Forman’s highly influential 2002 paper <em>A User’s Guide to Discrete Morse Theory</em> presents an overview of the subject in a very readable manner. As a proof of concept, the author determines the topology (homotopy type) of the abstract simplicial complex of disconnected graphs of order <span><math><mi>n</mi></math></span> (which was previously done by Victor Vassiliev using classical topological methods) using discrete Morse theoretic techniques, which are purely combinatorial in nature. The techniques involve the construction (and verification) of a discrete gradient vector field on the complex. However, the verification part relies on a claim that does not seem to hold. In this note, we provide a couple of counterexamples against this specific claim. We also provide an alternative proof of the bigger claim that the constructed discrete vector field is indeed a gradient vector field. Our proof technique relies on a key observation which is not specific to the problem at hand, and thus is applicable while verifying a constructed discrete vector field is a gradient one in general.</div></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"7 ","pages":"Article 100174"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X25000011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Robin Forman’s highly influential 2002 paper A User’s Guide to Discrete Morse Theory presents an overview of the subject in a very readable manner. As a proof of concept, the author determines the topology (homotopy type) of the abstract simplicial complex of disconnected graphs of order (which was previously done by Victor Vassiliev using classical topological methods) using discrete Morse theoretic techniques, which are purely combinatorial in nature. The techniques involve the construction (and verification) of a discrete gradient vector field on the complex. However, the verification part relies on a claim that does not seem to hold. In this note, we provide a couple of counterexamples against this specific claim. We also provide an alternative proof of the bigger claim that the constructed discrete vector field is indeed a gradient vector field. Our proof technique relies on a key observation which is not specific to the problem at hand, and thus is applicable while verifying a constructed discrete vector field is a gradient one in general.