The Hadamard-PINN for PDE inverse problems: Convergence with distant initial guesses

Yohan Chandrasukmana, Helena Margaretha, Kie Van Ivanky Saputra
{"title":"The Hadamard-PINN for PDE inverse problems: Convergence with distant initial guesses","authors":"Yohan Chandrasukmana,&nbsp;Helena Margaretha,&nbsp;Kie Van Ivanky Saputra","doi":"10.1016/j.exco.2025.100175","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents the Hadamard-Physics-Informed Neural Network (H-PINN) for solving inverse problems in partial differential equations (PDEs), specifically the heat equation and the Korteweg–de Vries (KdV) equation. H-PINN addresses challenges in convergence and accuracy when initial parameter guesses are far from their actual values. The training process is divided into two phases: data fitting and parameter optimization. This phased approach is based on Hadamard’s conditions for well-posed problems, which emphasize that the uniqueness of a solution relies on the specified initial and boundary conditions. The model is trained using the Adam optimizer, along with a combined learning rate scheduler. To ensure reliability and consistency, we repeated each numerical experiment five times across three different initial guesses. Results showed significant improvements in parameter accuracy compared to the standard PINN, highlighting H-PINN’s effectiveness in scenarios with substantial deviations in initial guesses.</div></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"7 ","pages":"Article 100175"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X25000023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the Hadamard-Physics-Informed Neural Network (H-PINN) for solving inverse problems in partial differential equations (PDEs), specifically the heat equation and the Korteweg–de Vries (KdV) equation. H-PINN addresses challenges in convergence and accuracy when initial parameter guesses are far from their actual values. The training process is divided into two phases: data fitting and parameter optimization. This phased approach is based on Hadamard’s conditions for well-posed problems, which emphasize that the uniqueness of a solution relies on the specified initial and boundary conditions. The model is trained using the Adam optimizer, along with a combined learning rate scheduler. To ensure reliability and consistency, we repeated each numerical experiment five times across three different initial guesses. Results showed significant improvements in parameter accuracy compared to the standard PINN, highlighting H-PINN’s effectiveness in scenarios with substantial deviations in initial guesses.
PDE反问题的Hadamard-PINN:具有远初始猜测的收敛性
本文提出了用Hadamard-Physics-Informed Neural Network (H-PINN)求解偏微分方程(PDEs)的逆问题,特别是热方程和Korteweg-de Vries (KdV)方程。当初始参数猜测与实际值相差甚远时,H-PINN解决了收敛性和准确性方面的挑战。训练过程分为数据拟合和参数优化两个阶段。该方法基于适定问题的Hadamard条件,强调解的唯一性依赖于给定的初始条件和边界条件。该模型使用Adam优化器以及组合学习率调度器进行训练。为了确保可靠性和一致性,我们在三个不同的初始猜测中重复了每个数值实验五次。结果显示,与标准PINN相比,参数精度有显著提高,突出了H-PINN在初始猜测偏差较大的情况下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信