Stripe patterns for Gierer–Meinhard model in spatially varying thin domains

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Leila Mohammadi , Theodore Kolokolnikov , David Iron , Tamara A. Franz-Odendaal
{"title":"Stripe patterns for Gierer–Meinhard model in spatially varying thin domains","authors":"Leila Mohammadi ,&nbsp;Theodore Kolokolnikov ,&nbsp;David Iron ,&nbsp;Tamara A. Franz-Odendaal","doi":"10.1016/j.physd.2024.134480","DOIUrl":null,"url":null,"abstract":"<div><div>We explore pattern formation for the GM model on thin domains. If the domain is sufficiently thin, the pattern consists of stripes which are nearly one-dimensional. We analyze patterns consisting of one, two or many stripes. We find that a single stripe can be located either at the thickest or thinnest part of the channel, depending on the choice of parameters. In the limit of many stripes, we derive an effective pattern density description of the equilibrium state. The effective density is easily computable as a solution of a first order ODE subject to an integral constraint. Depending on problem parameters, the resulting pattern can be either global spanning the entire domain, or can be clustered near either thickest or thinnest part of the domain. In addition, instability thresholds are derived from the continuum density limit of many stripes. Full two-dimensional numerical simulations are performed and are shown to be in agreement with the asymptotic results.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"472 ","pages":"Article 134480"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924004305","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We explore pattern formation for the GM model on thin domains. If the domain is sufficiently thin, the pattern consists of stripes which are nearly one-dimensional. We analyze patterns consisting of one, two or many stripes. We find that a single stripe can be located either at the thickest or thinnest part of the channel, depending on the choice of parameters. In the limit of many stripes, we derive an effective pattern density description of the equilibrium state. The effective density is easily computable as a solution of a first order ODE subject to an integral constraint. Depending on problem parameters, the resulting pattern can be either global spanning the entire domain, or can be clustered near either thickest or thinnest part of the domain. In addition, instability thresholds are derived from the continuum density limit of many stripes. Full two-dimensional numerical simulations are performed and are shown to be in agreement with the asymptotic results.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信