Numerical calculation and characteristics of quasi-periodic breathers to the Kadomtsev–Petviashvili-based system

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Zhonglong Zhao, Yu Wang, Pengcheng Xin
{"title":"Numerical calculation and characteristics of quasi-periodic breathers to the Kadomtsev–Petviashvili-based system","authors":"Zhonglong Zhao,&nbsp;Yu Wang,&nbsp;Pengcheng Xin","doi":"10.1016/j.physd.2024.134497","DOIUrl":null,"url":null,"abstract":"<div><div>The Kadomtsev–Petviashvili-based system can be regarded as a consistent approximation of a class of partial differential equations, which can be used to describe the nonlinear wave phenomena in the fields of ionomers, fluid dynamics and optical systems. In this paper, an effective method is introduced to study the quasi-periodic breathers of the Kadomtsev–Petviashvili-based system. Based on the Hirota’s bilinear method and the Riemann-theta function, an over-determined system about quasi-periodic breathers can be obtained. It can be integrated into a least square problem and solved by the numerical iterative algorithms. The asymptotic properties of the quasi-periodic 1-breathers are analyzed rigorously under the small amplitude limit. The dynamic behaviors including the periodicity and distance between two breather chains of the quasi-periodic breathers are analyzed precisely by an analytic method related to the characteristic lines. The effective method presented in this paper can be further extended to the other integrable systems with breathers.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"472 ","pages":"Article 134497"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924004470","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The Kadomtsev–Petviashvili-based system can be regarded as a consistent approximation of a class of partial differential equations, which can be used to describe the nonlinear wave phenomena in the fields of ionomers, fluid dynamics and optical systems. In this paper, an effective method is introduced to study the quasi-periodic breathers of the Kadomtsev–Petviashvili-based system. Based on the Hirota’s bilinear method and the Riemann-theta function, an over-determined system about quasi-periodic breathers can be obtained. It can be integrated into a least square problem and solved by the numerical iterative algorithms. The asymptotic properties of the quasi-periodic 1-breathers are analyzed rigorously under the small amplitude limit. The dynamic behaviors including the periodicity and distance between two breather chains of the quasi-periodic breathers are analyzed precisely by an analytic method related to the characteristic lines. The effective method presented in this paper can be further extended to the other integrable systems with breathers.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信