Boundedness of bouncing balls in quadratic potentials

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Zhichao Ma , Jinhao Liang , Junxiang Xu
{"title":"Boundedness of bouncing balls in quadratic potentials","authors":"Zhichao Ma ,&nbsp;Jinhao Liang ,&nbsp;Junxiang Xu","doi":"10.1016/j.physd.2024.134465","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the dynamics of a ball elastically bouncing off an infinitely heavy plate. Suppose the plate periodically moves in vertical direction and the ball between impacts is only subjected to the force with quadratic potential <span><math><mrow><mi>U</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac><msup><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, where <span><math><msup><mrow><mrow><mo>(</mo><mn>4</mn><mi>α</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span> is Diophantine. Without imposing any assumption on the motion of plate besides smoothness, we prove that the ball never goes to infinity. Comparing to previous works, we drop certain assumptions which are usually imposed on the motion of the plate to guarantee twist conditions. This result depends on the famed Herman’s Last Geometric Theorem, which is given by Herman no later than 1995 in his “Seminaire de Systemes Dynamiques” at the Universite Paris VII and also in his 1998 ICM address (Herman, 1998 <span><span>[1]</span></span>). Its proof is also provided by Fayad and Krikorian (Fayad and Krikorian, 2009 <span><span>[2]</span></span>) in 2009 and recently we obtained a slightly different version (Ma and Xu, 2023 <span><span>[3]</span></span>), which is more convenient for this physical model.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"472 ","pages":"Article 134465"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924004159","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the dynamics of a ball elastically bouncing off an infinitely heavy plate. Suppose the plate periodically moves in vertical direction and the ball between impacts is only subjected to the force with quadratic potential U(z)=α2z2, where (4α)1/2 is Diophantine. Without imposing any assumption on the motion of plate besides smoothness, we prove that the ball never goes to infinity. Comparing to previous works, we drop certain assumptions which are usually imposed on the motion of the plate to guarantee twist conditions. This result depends on the famed Herman’s Last Geometric Theorem, which is given by Herman no later than 1995 in his “Seminaire de Systemes Dynamiques” at the Universite Paris VII and also in his 1998 ICM address (Herman, 1998 [1]). Its proof is also provided by Fayad and Krikorian (Fayad and Krikorian, 2009 [2]) in 2009 and recently we obtained a slightly different version (Ma and Xu, 2023 [3]), which is more convenient for this physical model.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信