Scaling invariance for the diffusion coefficient in a dissipative standard mapping

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Edson D. Leonel , Célia M. Kuwana , Diego F.M. Oliveira
{"title":"Scaling invariance for the diffusion coefficient in a dissipative standard mapping","authors":"Edson D. Leonel ,&nbsp;Célia M. Kuwana ,&nbsp;Diego F.M. Oliveira","doi":"10.1016/j.physd.2024.134513","DOIUrl":null,"url":null,"abstract":"<div><div>The unbounded diffusion observed for the standard mapping in a regime of high nonlinearity is suppressed by dissipation due to the violation of Liouville’s theorem. The diffusion coefficient becomes important for the description of scaling invariance particularly for the suppression of the unbounded action diffusion. When the dynamics start in the regime of low action, the diffusion coefficient remains constant for a long time, guaranteeing the diffusion for an ensemble of particles. Eventually, it evolves into a regime of decay, marking the suppression of particle action growth. We prove it is scaling invariant for the control parameters and the crossover time identifying the changeover from the constant domain, leading to diffusion, for a regime of decay marking the saturation of the diffusion, scales with the same critical exponent <span><math><mrow><mi>z</mi><mo>=</mo><mo>−</mo><mn>1</mn></mrow></math></span> for a transition from bounded to unbounded diffusion in a dissipative time dependent billiard system.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"472 ","pages":"Article 134513"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924004639","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The unbounded diffusion observed for the standard mapping in a regime of high nonlinearity is suppressed by dissipation due to the violation of Liouville’s theorem. The diffusion coefficient becomes important for the description of scaling invariance particularly for the suppression of the unbounded action diffusion. When the dynamics start in the regime of low action, the diffusion coefficient remains constant for a long time, guaranteeing the diffusion for an ensemble of particles. Eventually, it evolves into a regime of decay, marking the suppression of particle action growth. We prove it is scaling invariant for the control parameters and the crossover time identifying the changeover from the constant domain, leading to diffusion, for a regime of decay marking the saturation of the diffusion, scales with the same critical exponent z=1 for a transition from bounded to unbounded diffusion in a dissipative time dependent billiard system.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信