Francesco Fedele , Cristel Chandre , Martin Horvat , Nedjeljka Žagar
{"title":"Hamiltonian Lorenz-like models","authors":"Francesco Fedele , Cristel Chandre , Martin Horvat , Nedjeljka Žagar","doi":"10.1016/j.physd.2024.134494","DOIUrl":null,"url":null,"abstract":"<div><div>The reduced-complexity models developed by Edward Lorenz are widely used in atmospheric and climate sciences to study nonlinear aspect of dynamics and to demonstrate new methods for numerical weather prediction. A set of inviscid Lorenz models describing the dynamics of a single variable in a zonally-periodic domain, without dissipation and forcing, conserve energy but are not Hamiltonian. In this paper, we start from a general continuous parent fluid model, from which we derive a family of Hamiltonian Lorenz-like models through a symplectic discretization of the associated Poisson bracket, which preserves the Jacobi identity. A symplectic-split integrator is also formulated. These Hamiltonian models conserve energy and maintain the nearest-neighbor couplings inherent in the original Lorenz model. As a corollary, we find that the Lorenz-96 model can be seen as a result of a poor discretization of a Poisson fluid bracket. Hamiltonian Lorenz-like models offer promising alternatives to the original Lorenz models, especially for the qualitative representation of non-Gaussian weather extremes and wave interactions, which underscore many phenomena of the climate system.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"472 ","pages":"Article 134494"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924004445","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The reduced-complexity models developed by Edward Lorenz are widely used in atmospheric and climate sciences to study nonlinear aspect of dynamics and to demonstrate new methods for numerical weather prediction. A set of inviscid Lorenz models describing the dynamics of a single variable in a zonally-periodic domain, without dissipation and forcing, conserve energy but are not Hamiltonian. In this paper, we start from a general continuous parent fluid model, from which we derive a family of Hamiltonian Lorenz-like models through a symplectic discretization of the associated Poisson bracket, which preserves the Jacobi identity. A symplectic-split integrator is also formulated. These Hamiltonian models conserve energy and maintain the nearest-neighbor couplings inherent in the original Lorenz model. As a corollary, we find that the Lorenz-96 model can be seen as a result of a poor discretization of a Poisson fluid bracket. Hamiltonian Lorenz-like models offer promising alternatives to the original Lorenz models, especially for the qualitative representation of non-Gaussian weather extremes and wave interactions, which underscore many phenomena of the climate system.
期刊介绍:
Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.