Hamiltonian Lorenz-like models

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Francesco Fedele , Cristel Chandre , Martin Horvat , Nedjeljka Žagar
{"title":"Hamiltonian Lorenz-like models","authors":"Francesco Fedele ,&nbsp;Cristel Chandre ,&nbsp;Martin Horvat ,&nbsp;Nedjeljka Žagar","doi":"10.1016/j.physd.2024.134494","DOIUrl":null,"url":null,"abstract":"<div><div>The reduced-complexity models developed by Edward Lorenz are widely used in atmospheric and climate sciences to study nonlinear aspect of dynamics and to demonstrate new methods for numerical weather prediction. A set of inviscid Lorenz models describing the dynamics of a single variable in a zonally-periodic domain, without dissipation and forcing, conserve energy but are not Hamiltonian. In this paper, we start from a general continuous parent fluid model, from which we derive a family of Hamiltonian Lorenz-like models through a symplectic discretization of the associated Poisson bracket, which preserves the Jacobi identity. A symplectic-split integrator is also formulated. These Hamiltonian models conserve energy and maintain the nearest-neighbor couplings inherent in the original Lorenz model. As a corollary, we find that the Lorenz-96 model can be seen as a result of a poor discretization of a Poisson fluid bracket. Hamiltonian Lorenz-like models offer promising alternatives to the original Lorenz models, especially for the qualitative representation of non-Gaussian weather extremes and wave interactions, which underscore many phenomena of the climate system.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"472 ","pages":"Article 134494"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924004445","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The reduced-complexity models developed by Edward Lorenz are widely used in atmospheric and climate sciences to study nonlinear aspect of dynamics and to demonstrate new methods for numerical weather prediction. A set of inviscid Lorenz models describing the dynamics of a single variable in a zonally-periodic domain, without dissipation and forcing, conserve energy but are not Hamiltonian. In this paper, we start from a general continuous parent fluid model, from which we derive a family of Hamiltonian Lorenz-like models through a symplectic discretization of the associated Poisson bracket, which preserves the Jacobi identity. A symplectic-split integrator is also formulated. These Hamiltonian models conserve energy and maintain the nearest-neighbor couplings inherent in the original Lorenz model. As a corollary, we find that the Lorenz-96 model can be seen as a result of a poor discretization of a Poisson fluid bracket. Hamiltonian Lorenz-like models offer promising alternatives to the original Lorenz models, especially for the qualitative representation of non-Gaussian weather extremes and wave interactions, which underscore many phenomena of the climate system.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信