{"title":"More about the cofinality and the covering of the ideal of strong measure zero sets","authors":"Miguel A. Cardona , Diego A. Mejía","doi":"10.1016/j.apal.2024.103537","DOIUrl":null,"url":null,"abstract":"<div><div>We improve the previous work of Yorioka and the first author about the combinatorics of the ideal <span><math><mi>SN</mi></math></span> of strong measure zero sets of reals. We refine the notions of dominating systems of the first author and introduce the new combinatorial principle <span><math><mrow><mi>DS</mi></mrow><mo>(</mo><mi>δ</mi><mo>)</mo></math></span> that helps to find simple conditions to deduce <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>κ</mi></mrow></msub><mo>≤</mo><mrow><mi>cof</mi></mrow><mo>(</mo><mrow><mi>SN</mi></mrow><mo>)</mo></math></span> (where <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>κ</mi></mrow></msub></math></span> is the dominating number on <span><math><msup><mrow><mi>κ</mi></mrow><mrow><mi>κ</mi></mrow></msup></math></span>). In addition, we find a new upper bound of <span><math><mrow><mi>cof</mi></mrow><mo>(</mo><mrow><mi>SN</mi></mrow><mo>)</mo></math></span> by using products of relational systems and cardinal characteristics associated with Yorioka ideals.</div><div>In addition, we dissect and generalize results from Pawlikowski to force upper bounds of the covering of <span><math><mi>SN</mi></math></span>, particularly for finite support iterations of precaliber posets.</div><div>Finally, as applications of our main theorems, we prove consistency results about the cardinal characteristics associated with <span><math><mi>SN</mi></math></span> and the principle <span><math><mrow><mi>DS</mi></mrow><mo>(</mo><mi>δ</mi><mo>)</mo></math></span>. For example, we show that <span><math><mrow><mi>cov</mi></mrow><mo>(</mo><mrow><mi>SN</mi></mrow><mo>)</mo><mo><</mo><mrow><mi>non</mi></mrow><mo>(</mo><mrow><mi>SN</mi></mrow><mo>)</mo><mo>=</mo><mi>c</mi><mo><</mo><mrow><mi>cof</mi></mrow><mo>(</mo><mrow><mi>SN</mi></mrow><mo>)</mo></math></span> holds in Cohen model, and we refine a result (and the proof) of the first author about the consistency of <span><math><mrow><mi>cov</mi></mrow><mo>(</mo><mrow><mi>SN</mi></mrow><mo>)</mo><mo><</mo><mrow><mi>non</mi></mrow><mo>(</mo><mrow><mi>SN</mi></mrow><mo>)</mo><mo><</mo><mrow><mi>cof</mi></mrow><mo>(</mo><mrow><mi>SN</mi></mrow><mo>)</mo></math></span>, with <span><math><mi>c</mi></math></span> in any desired position with respect to <span><math><mrow><mi>cof</mi></mrow><mo>(</mo><mrow><mi>SN</mi></mrow><mo>)</mo></math></span>, and the improvement that <span><math><mrow><mi>non</mi></mrow><mo>(</mo><mrow><mi>SN</mi></mrow><mo>)</mo></math></span> can be singular here.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 4","pages":"Article 103537"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007224001416","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
Abstract
We improve the previous work of Yorioka and the first author about the combinatorics of the ideal of strong measure zero sets of reals. We refine the notions of dominating systems of the first author and introduce the new combinatorial principle that helps to find simple conditions to deduce (where is the dominating number on ). In addition, we find a new upper bound of by using products of relational systems and cardinal characteristics associated with Yorioka ideals.
In addition, we dissect and generalize results from Pawlikowski to force upper bounds of the covering of , particularly for finite support iterations of precaliber posets.
Finally, as applications of our main theorems, we prove consistency results about the cardinal characteristics associated with and the principle . For example, we show that holds in Cohen model, and we refine a result (and the proof) of the first author about the consistency of , with in any desired position with respect to , and the improvement that can be singular here.
期刊介绍:
The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.