More about the cofinality and the covering of the ideal of strong measure zero sets

IF 0.6 2区 数学 Q2 LOGIC
Miguel A. Cardona , Diego A. Mejía
{"title":"More about the cofinality and the covering of the ideal of strong measure zero sets","authors":"Miguel A. Cardona ,&nbsp;Diego A. Mejía","doi":"10.1016/j.apal.2024.103537","DOIUrl":null,"url":null,"abstract":"<div><div>We improve the previous work of Yorioka and the first author about the combinatorics of the ideal <span><math><mi>SN</mi></math></span> of strong measure zero sets of reals. We refine the notions of dominating systems of the first author and introduce the new combinatorial principle <span><math><mrow><mi>DS</mi></mrow><mo>(</mo><mi>δ</mi><mo>)</mo></math></span> that helps to find simple conditions to deduce <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>κ</mi></mrow></msub><mo>≤</mo><mrow><mi>cof</mi></mrow><mo>(</mo><mrow><mi>SN</mi></mrow><mo>)</mo></math></span> (where <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>κ</mi></mrow></msub></math></span> is the dominating number on <span><math><msup><mrow><mi>κ</mi></mrow><mrow><mi>κ</mi></mrow></msup></math></span>). In addition, we find a new upper bound of <span><math><mrow><mi>cof</mi></mrow><mo>(</mo><mrow><mi>SN</mi></mrow><mo>)</mo></math></span> by using products of relational systems and cardinal characteristics associated with Yorioka ideals.</div><div>In addition, we dissect and generalize results from Pawlikowski to force upper bounds of the covering of <span><math><mi>SN</mi></math></span>, particularly for finite support iterations of precaliber posets.</div><div>Finally, as applications of our main theorems, we prove consistency results about the cardinal characteristics associated with <span><math><mi>SN</mi></math></span> and the principle <span><math><mrow><mi>DS</mi></mrow><mo>(</mo><mi>δ</mi><mo>)</mo></math></span>. For example, we show that <span><math><mrow><mi>cov</mi></mrow><mo>(</mo><mrow><mi>SN</mi></mrow><mo>)</mo><mo>&lt;</mo><mrow><mi>non</mi></mrow><mo>(</mo><mrow><mi>SN</mi></mrow><mo>)</mo><mo>=</mo><mi>c</mi><mo>&lt;</mo><mrow><mi>cof</mi></mrow><mo>(</mo><mrow><mi>SN</mi></mrow><mo>)</mo></math></span> holds in Cohen model, and we refine a result (and the proof) of the first author about the consistency of <span><math><mrow><mi>cov</mi></mrow><mo>(</mo><mrow><mi>SN</mi></mrow><mo>)</mo><mo>&lt;</mo><mrow><mi>non</mi></mrow><mo>(</mo><mrow><mi>SN</mi></mrow><mo>)</mo><mo>&lt;</mo><mrow><mi>cof</mi></mrow><mo>(</mo><mrow><mi>SN</mi></mrow><mo>)</mo></math></span>, with <span><math><mi>c</mi></math></span> in any desired position with respect to <span><math><mrow><mi>cof</mi></mrow><mo>(</mo><mrow><mi>SN</mi></mrow><mo>)</mo></math></span>, and the improvement that <span><math><mrow><mi>non</mi></mrow><mo>(</mo><mrow><mi>SN</mi></mrow><mo>)</mo></math></span> can be singular here.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 4","pages":"Article 103537"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007224001416","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

We improve the previous work of Yorioka and the first author about the combinatorics of the ideal SN of strong measure zero sets of reals. We refine the notions of dominating systems of the first author and introduce the new combinatorial principle DS(δ) that helps to find simple conditions to deduce dκcof(SN) (where dκ is the dominating number on κκ). In addition, we find a new upper bound of cof(SN) by using products of relational systems and cardinal characteristics associated with Yorioka ideals.
In addition, we dissect and generalize results from Pawlikowski to force upper bounds of the covering of SN, particularly for finite support iterations of precaliber posets.
Finally, as applications of our main theorems, we prove consistency results about the cardinal characteristics associated with SN and the principle DS(δ). For example, we show that cov(SN)<non(SN)=c<cof(SN) holds in Cohen model, and we refine a result (and the proof) of the first author about the consistency of cov(SN)<non(SN)<cof(SN), with c in any desired position with respect to cof(SN), and the improvement that non(SN) can be singular here.
进一步讨论了强测度零集理想的共性和覆盖性
我们改进了Yorioka和第一作者之前关于实数的强测度零集的理想SN的组合的工作。我们改进了第一作者的支配系统概念,并引入了新的组合原理DS(δ),该原理有助于找到简单的条件来推导dκ≤cof(SN)(其中dκ是κκ的支配数)。此外,我们利用关系系统的乘积和与Yorioka理想相关的基数特征,找到了cof(SN)的一个新的上界。此外,我们剖析和推广了Pawlikowski的结果,以强制SN覆盖的上界,特别是对于预校准集的有限支持迭代。最后,作为主要定理的应用,我们证明了SN与DS(δ)原理相关的基本特征的一致性结果。例如,我们证明了cov(SN)<non(SN)=c<cof(SN)在Cohen模型中成立,并改进了第一作者关于cov(SN)<non(SN)<cof(SN)在c相对于cof(SN)处于任意位置时的一致性的一个结果(和证明),并改进了non(SN)可以是奇异的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信