The logic of cardinality comparison without the axiom of choice

IF 0.6 2区 数学 Q2 LOGIC
Matthew Harrison-Trainor , Dhruv Kulshreshtha
{"title":"The logic of cardinality comparison without the axiom of choice","authors":"Matthew Harrison-Trainor ,&nbsp;Dhruv Kulshreshtha","doi":"10.1016/j.apal.2024.103549","DOIUrl":null,"url":null,"abstract":"<div><div>We work in the setting of Zermelo-Fraenkel set theory without assuming the Axiom of Choice. We consider sets with the Boolean operations together with the additional structure of comparing cardinality (in the Cantorian sense of injections). What principles does one need to add to the laws of Boolean algebra to reason not only about intersection, union, and complementation of sets, but also about the relative size of sets? We give a complete axiomatization.</div><div>A particularly interesting case is when one restricts to the Dedekind-finite sets. In this case, one needs exactly the same principles as for reasoning about imprecise probability comparisons, the central principle being Generalized Finite Cancellation (which includes, as a special case, division-by-<em>m</em>). In the general case, the central principle is a restricted version of Generalized Finite Cancellation within Archimedean classes which we call Covered Generalized Finite Cancellation.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 4","pages":"Article 103549"},"PeriodicalIF":0.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007224001532","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

We work in the setting of Zermelo-Fraenkel set theory without assuming the Axiom of Choice. We consider sets with the Boolean operations together with the additional structure of comparing cardinality (in the Cantorian sense of injections). What principles does one need to add to the laws of Boolean algebra to reason not only about intersection, union, and complementation of sets, but also about the relative size of sets? We give a complete axiomatization.
A particularly interesting case is when one restricts to the Dedekind-finite sets. In this case, one needs exactly the same principles as for reasoning about imprecise probability comparisons, the central principle being Generalized Finite Cancellation (which includes, as a special case, division-by-m). In the general case, the central principle is a restricted version of Generalized Finite Cancellation within Archimedean classes which we call Covered Generalized Finite Cancellation.
没有选择公理的基数比较逻辑
我们在Zermelo-Fraenkel集合理论的背景下工作,而不假设选择公理。我们考虑具有布尔运算的集合以及比较基数的附加结构(在Cantorian意义上的注入)。我们需要在布尔代数的法则中加入什么原则来推理集合的相交、并和互补,以及集合的相对大小?我们给出了一个完全的公理化。一个特别有趣的例子是当我们限制dedekind有限集的时候。在这种情况下,人们需要与不精确概率比较的推理完全相同的原理,中心原理是广义有限消去(作为特殊情况,它包括除以m的除法)。在一般情况下,中心原理是阿基米德类中广义有限消去的一个限制版本,我们称之为覆盖广义有限消去。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信