Stratified distance space improves the efficiency of sequential samplers for approximate Bayesian computation

IF 1.6 3区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Henri Pesonen , Jukka Corander
{"title":"Stratified distance space improves the efficiency of sequential samplers for approximate Bayesian computation","authors":"Henri Pesonen ,&nbsp;Jukka Corander","doi":"10.1016/j.csda.2025.108141","DOIUrl":null,"url":null,"abstract":"<div><div>Approximate Bayesian computation (ABC) methods are standard tools for inferring parameters of complex models when the likelihood function is analytically intractable. A popular approach to improving the poor acceptance rate of the basic rejection sampling ABC algorithm is to use sequential Monte Carlo (ABC SMC) to produce a sequence of proposal distributions adapting towards the posterior, instead of generating values from the prior distribution of the model parameters. Proposal distribution for the subsequent iteration is typically obtained from a weighted set of samples, often called particles, of the current iteration of this sequence. Current methods for constructing these proposal distributions treat all the particles equivalently, regardless of the corresponding value generated by the sampler, which may lead to inefficiency when propagating the information across iterations of the algorithm. To improve sampler efficiency, a modified approach called stratified distance ABC SMC is introduced. The algorithm stratifies particles based on their distance between the corresponding synthetic and observed data, and then constructs distinct proposal distributions for all the strata. Taking into account the distribution of distances across the particle space leads to substantially improved acceptance rate of the rejection sampling. It is shown that further efficiency could be gained by using a newly proposed stopping rule for the sequential process based on the stratified posterior samples and these advances are demonstrated by several examples.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"207 ","pages":"Article 108141"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947325000179","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Approximate Bayesian computation (ABC) methods are standard tools for inferring parameters of complex models when the likelihood function is analytically intractable. A popular approach to improving the poor acceptance rate of the basic rejection sampling ABC algorithm is to use sequential Monte Carlo (ABC SMC) to produce a sequence of proposal distributions adapting towards the posterior, instead of generating values from the prior distribution of the model parameters. Proposal distribution for the subsequent iteration is typically obtained from a weighted set of samples, often called particles, of the current iteration of this sequence. Current methods for constructing these proposal distributions treat all the particles equivalently, regardless of the corresponding value generated by the sampler, which may lead to inefficiency when propagating the information across iterations of the algorithm. To improve sampler efficiency, a modified approach called stratified distance ABC SMC is introduced. The algorithm stratifies particles based on their distance between the corresponding synthetic and observed data, and then constructs distinct proposal distributions for all the strata. Taking into account the distribution of distances across the particle space leads to substantially improved acceptance rate of the rejection sampling. It is shown that further efficiency could be gained by using a newly proposed stopping rule for the sequential process based on the stratified posterior samples and these advances are demonstrated by several examples.
分层距离空间提高了序列采样器近似贝叶斯计算的效率
近似贝叶斯计算(ABC)方法是在似然函数难以解析时推断复杂模型参数的标准工具。为了改善基本拒绝抽样ABC算法的低接受率,一种流行的方法是使用顺序蒙特卡罗(ABC SMC)来产生一个适应后验的建议分布序列,而不是从模型参数的先验分布中生成值。后续迭代的建议分布通常是从该序列当前迭代的加权样本集(通常称为粒子)中获得的。目前构建这些建议分布的方法等同地对待所有粒子,而不考虑采样器产生的相应值,这可能导致跨算法迭代传播信息时效率低下。为了提高采样效率,引入了一种改进的分层距离ABC - SMC方法。该算法根据合成数据与观测数据之间的距离对粒子进行分层,然后为所有层构建不同的建议分布。考虑粒子空间的距离分布,可大大提高拒绝抽样的接受率。结果表明,采用基于分层后验样本的新提出的顺序过程停止规则可以进一步提高效率,并通过几个实例证明了这些进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Statistics & Data Analysis
Computational Statistics & Data Analysis 数学-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
167
审稿时长
60 days
期刊介绍: Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas: I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article. II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures. [...] III) Special Applications - [...] IV) Annals of Statistical Data Science [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信