State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review

IF 5.9 4区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Yanghanbin Zhang , Dongxiao Wen , Wei Sun , Jiahe Peng , Dezhong Yu , Xin Li , Yang Qu , Jizhou Jiang
{"title":"State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review","authors":"Yanghanbin Zhang ,&nbsp;Dongxiao Wen ,&nbsp;Wei Sun ,&nbsp;Jiahe Peng ,&nbsp;Dezhong Yu ,&nbsp;Xin Li ,&nbsp;Yang Qu ,&nbsp;Jizhou Jiang","doi":"10.1016/j.cjsc.2024.100469","DOIUrl":null,"url":null,"abstract":"<div><div>g-C<sub>3</sub>N<sub>4</sub> is a promising non-metallic photocatalyst recognized for its unique structural and physicochemical properties. Recent reviews have addressed g-C<sub>3</sub>N<sub>4</sub>-based photocatalysis; however, the rapid progress in big data and artificial intelligence has significantly accelerated the design, synthesis, and optimization of these materials. Machine learning, theoretical simulations, and advanced <em>in-situ</em> characterization techniques have deepened our understanding of their photocatalytic mechanisms. This review critically evaluates advancements in g-C<sub>3</sub>N<sub>4</sub>-based photocatalysts over the last two to three years, focusing on strategies to improve photogenerated charge separation, expand light absorption, and enhance stability and catalytic efficiency. It discusses cutting-edge <em>in-situ</em> characterization methods alongside machine learning approaches for predicting and optimizing applications in photocatalytic H<sub>2</sub> evolution, CO<sub>2</sub> reduction, pollutant degradation, H<sub>2</sub>O<sub>2</sub> production, and nitrogen fixation. Finally, it proposes prospective strategies for further enhancing the performance of g-C<sub>3</sub>N<sub>4</sub>-based photocatalysts, aiming to guide the design of high-performance two-dimensional carbon-based photocatalysts.</div></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 12","pages":"Article 100469"},"PeriodicalIF":5.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"结构化学","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254586124003519","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

g-C3N4 is a promising non-metallic photocatalyst recognized for its unique structural and physicochemical properties. Recent reviews have addressed g-C3N4-based photocatalysis; however, the rapid progress in big data and artificial intelligence has significantly accelerated the design, synthesis, and optimization of these materials. Machine learning, theoretical simulations, and advanced in-situ characterization techniques have deepened our understanding of their photocatalytic mechanisms. This review critically evaluates advancements in g-C3N4-based photocatalysts over the last two to three years, focusing on strategies to improve photogenerated charge separation, expand light absorption, and enhance stability and catalytic efficiency. It discusses cutting-edge in-situ characterization methods alongside machine learning approaches for predicting and optimizing applications in photocatalytic H2 evolution, CO2 reduction, pollutant degradation, H2O2 production, and nitrogen fixation. Finally, it proposes prospective strategies for further enhancing the performance of g-C3N4-based photocatalysts, aiming to guide the design of high-performance two-dimensional carbon-based photocatalysts.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
结构化学
结构化学 化学-晶体学
CiteScore
4.70
自引率
22.70%
发文量
5334
审稿时长
13 days
期刊介绍: Chinese Journal of Structural Chemistry “JIEGOU HUAXUE ”, an academic journal consisting of reviews, articles, communications and notes, provides a forum for the reporting and discussion of current novel research achievements in the fields of structural chemistry, crystallography, spectroscopy, quantum chemistry, pharmaceutical chemistry, biochemistry, material science, etc. Structural Chemistry has been indexed by SCI, CA, and some other prestigious publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信