Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport

IF 5.9 4区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Jiangqi Ning, Junhan Huang, Yuhang Liu, Yanlei Chen, Qing Niu, Qingqing Lin, Yajun He, Zheyuan Liu, Yan Yu, Liuyi Li
{"title":"Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport","authors":"Jiangqi Ning,&nbsp;Junhan Huang,&nbsp;Yuhang Liu,&nbsp;Yanlei Chen,&nbsp;Qing Niu,&nbsp;Qingqing Lin,&nbsp;Yajun He,&nbsp;Zheyuan Liu,&nbsp;Yan Yu,&nbsp;Liuyi Li","doi":"10.1016/j.cjsc.2024.100453","DOIUrl":null,"url":null,"abstract":"<div><div>Targeted electron transfer to catalytically active site for CO<sub>2</sub> reduction is promising for enhancing the efficiency of artificial photosynthesis. Here, we demonstrate a design of an alkyl-linked heterostructure composing of TiO<sub>2</sub> and a Cu-porphyrin-based covalent organic framework (TiO<sub>2</sub>@CuPorTT-COF) for the photoreduction of CO<sub>2</sub> with H<sub>2</sub>O. Through specific coordination effect, the alkyl chain bridges TiO<sub>2</sub> and Cu moiety in COF. Upon light illumination, the photoinduced electrons in TiO<sub>2</sub> can be directionally transported across the interface along the alkyl chain to the Cu active sites to reduce adsorbed CO<sub>2</sub>, while the left holes are consumed by the H<sub>2</sub>O oxidation, enhancing the spatial separation and utilization of electron-hole pairs. Accordingly, the TiO<sub>2</sub>@CuPorTT-COF enables remarkably superior catalytic activities over the counterpart without the alkyl bridge for electron transfer with 5 times of CO production rate. An apparent quantum efficiency of 0.455% at 380 nm is achieved. Moreover, a dynamic evolution of Cu active site for CO<sub>2</sub> reduction is revealed, which can be promoted by the targeting electron transport approach. This work provides a targeted electron transport strategy for constructing photocatalysts.</div></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 12","pages":"Article 100453"},"PeriodicalIF":5.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"结构化学","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254586124003350","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Targeted electron transfer to catalytically active site for CO2 reduction is promising for enhancing the efficiency of artificial photosynthesis. Here, we demonstrate a design of an alkyl-linked heterostructure composing of TiO2 and a Cu-porphyrin-based covalent organic framework (TiO2@CuPorTT-COF) for the photoreduction of CO2 with H2O. Through specific coordination effect, the alkyl chain bridges TiO2 and Cu moiety in COF. Upon light illumination, the photoinduced electrons in TiO2 can be directionally transported across the interface along the alkyl chain to the Cu active sites to reduce adsorbed CO2, while the left holes are consumed by the H2O oxidation, enhancing the spatial separation and utilization of electron-hole pairs. Accordingly, the TiO2@CuPorTT-COF enables remarkably superior catalytic activities over the counterpart without the alkyl bridge for electron transfer with 5 times of CO production rate. An apparent quantum efficiency of 0.455% at 380 nm is achieved. Moreover, a dynamic evolution of Cu active site for CO2 reduction is revealed, which can be promoted by the targeting electron transport approach. This work provides a targeted electron transport strategy for constructing photocatalysts.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
结构化学
结构化学 化学-晶体学
CiteScore
4.70
自引率
22.70%
发文量
5334
审稿时长
13 days
期刊介绍: Chinese Journal of Structural Chemistry “JIEGOU HUAXUE ”, an academic journal consisting of reviews, articles, communications and notes, provides a forum for the reporting and discussion of current novel research achievements in the fields of structural chemistry, crystallography, spectroscopy, quantum chemistry, pharmaceutical chemistry, biochemistry, material science, etc. Structural Chemistry has been indexed by SCI, CA, and some other prestigious publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信