Integrating spatial-temporal risk maps with candidate trajectory trees for explainable autonomous driving planning

IF 12.5 Q1 TRANSPORTATION
Qiyuan Liu , Jiawei Zhang , Jingwei Ge , Cheng Chang , Zhiheng Li , Shen Li , Li Li
{"title":"Integrating spatial-temporal risk maps with candidate trajectory trees for explainable autonomous driving planning","authors":"Qiyuan Liu ,&nbsp;Jiawei Zhang ,&nbsp;Jingwei Ge ,&nbsp;Cheng Chang ,&nbsp;Zhiheng Li ,&nbsp;Shen Li ,&nbsp;Li Li","doi":"10.1016/j.commtr.2025.100161","DOIUrl":null,"url":null,"abstract":"<div><div>With increasing public concern about autonomous vehicles, there is a growing demand for developing explainable autonomous driving planning technology. Traditional risk field methods use handcrafted potential field models to explain driving risks in a scenario. When explaining highly interactive scenarios, such prior knowledge-based methods still lack flexibility, leading to insufficient interpretability. In this study, we first propose the concept of a risk map that can be seen as a discrete, ego vehicle's view form of the risk field. We then design an explainable trajectory planning framework that integrates risk maps with the candidate trajectory tree generated by trajectory prediction models. We further filter safe candidate trajectories from the tree on the basis of their cumulative risks in the risk maps and then select the optimal trajectory to execute by balancing other driving objectives. The validation results in various real-world scenarios demonstrate that our method can generate understandable risk maps and explain the risk differences between trajectories. Open-loop experiments show our model's advantages in terms of safety and efficiency for the trajectory planning task. An analysis of runtime demonstrated its potential for real-world applications.</div></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":"5 ","pages":"Article 100161"},"PeriodicalIF":12.5000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Transportation Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772424725000010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

With increasing public concern about autonomous vehicles, there is a growing demand for developing explainable autonomous driving planning technology. Traditional risk field methods use handcrafted potential field models to explain driving risks in a scenario. When explaining highly interactive scenarios, such prior knowledge-based methods still lack flexibility, leading to insufficient interpretability. In this study, we first propose the concept of a risk map that can be seen as a discrete, ego vehicle's view form of the risk field. We then design an explainable trajectory planning framework that integrates risk maps with the candidate trajectory tree generated by trajectory prediction models. We further filter safe candidate trajectories from the tree on the basis of their cumulative risks in the risk maps and then select the optimal trajectory to execute by balancing other driving objectives. The validation results in various real-world scenarios demonstrate that our method can generate understandable risk maps and explain the risk differences between trajectories. Open-loop experiments show our model's advantages in terms of safety and efficiency for the trajectory planning task. An analysis of runtime demonstrated its potential for real-world applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信