Zhengfei Yan , Chi Chen , Shaolong Wu , Zhiye Wang , Liuchun Li , Shangzhe Sun , Bisheng Yang , Jing Fu
{"title":"RF-DET: Refocusing on the small-scale objects using aggregated context for accurate power transmitting components detection on UAV oblique imagery","authors":"Zhengfei Yan , Chi Chen , Shaolong Wu , Zhiye Wang , Liuchun Li , Shangzhe Sun , Bisheng Yang , Jing Fu","doi":"10.1016/j.isprsjprs.2025.01.005","DOIUrl":null,"url":null,"abstract":"<div><div>In transmission lines, regular inspections are crucial for maintaining their safe operation. Automatic and accurate detection of power transmission facility components (power components) in inspection imagery is an effective way to monitor the status of electrical assets within the Right of Ways (RoWs). However, the multitude of small-scale objects (e.g. grading rings, vibration dampers) in inspection imagery poses enormous challenges. To address these challenges, we propose a coarse-to-fine object detector named RF-DET. It adopts a Refocus Framework to refine the detection accuracy of small objects within the Regions of Interest of the Power Components (P-RoIs) generated through explicit context. On the basis above, an Implicit Context Aggregation Attention Module (ICAM) is proposed. ICAM utilizes a multi-branch structure to capture and aggregate multi-directional positional and global information, enabling in-depth mining of the implicit context among small objects. To verify the performance of this detector, a benchmark dataset named DOPI-UAV is constructed, comprising 4,438 UAV oblique images and 54,591 instances, encompassing six common categories of power components and one category of defect. Experimental results show that RF-DET achieves mAP of 62.7%, 55.7%, 84.6%, and 52.8% on the DOPI-UAV, Tower, CPLID, and InsD datasets, respectively. Compared to the state-of-the-art method, such as YOLOv9, RF-DET attains significant performance improvements, with increases of 5.2% in mAP and 6.4% in mAP<sub>50</sub>, respectively. Especially, the AP<sub>S</sub> shows an improvement of 8.3%. The datasets and codes are available at <span><span>https://github.com/DCSI2022/RF-DET</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"220 ","pages":"Pages 692-711"},"PeriodicalIF":10.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092427162500005X","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In transmission lines, regular inspections are crucial for maintaining their safe operation. Automatic and accurate detection of power transmission facility components (power components) in inspection imagery is an effective way to monitor the status of electrical assets within the Right of Ways (RoWs). However, the multitude of small-scale objects (e.g. grading rings, vibration dampers) in inspection imagery poses enormous challenges. To address these challenges, we propose a coarse-to-fine object detector named RF-DET. It adopts a Refocus Framework to refine the detection accuracy of small objects within the Regions of Interest of the Power Components (P-RoIs) generated through explicit context. On the basis above, an Implicit Context Aggregation Attention Module (ICAM) is proposed. ICAM utilizes a multi-branch structure to capture and aggregate multi-directional positional and global information, enabling in-depth mining of the implicit context among small objects. To verify the performance of this detector, a benchmark dataset named DOPI-UAV is constructed, comprising 4,438 UAV oblique images and 54,591 instances, encompassing six common categories of power components and one category of defect. Experimental results show that RF-DET achieves mAP of 62.7%, 55.7%, 84.6%, and 52.8% on the DOPI-UAV, Tower, CPLID, and InsD datasets, respectively. Compared to the state-of-the-art method, such as YOLOv9, RF-DET attains significant performance improvements, with increases of 5.2% in mAP and 6.4% in mAP50, respectively. Especially, the APS shows an improvement of 8.3%. The datasets and codes are available at https://github.com/DCSI2022/RF-DET.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.