The KnowWhereGraph ontology

IF 2.1 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Cogan Shimizu , Shirly Stephen , Adrita Barua , Ling Cai , Antrea Christou , Kitty Currier , Abhilekha Dalal , Colby K. Fisher , Pascal Hitzler , Krzysztof Janowicz , Wenwen Li , Zilong Liu , Mohammad Saeid Mahdavinejad , Gengchen Mai , Dean Rehberger , Mark Schildhauer , Meilin Shi , Sanaz Saki Norouzi , Yuanyuan Tian , Sizhe Wang , Rui Zhu
{"title":"The KnowWhereGraph ontology","authors":"Cogan Shimizu ,&nbsp;Shirly Stephen ,&nbsp;Adrita Barua ,&nbsp;Ling Cai ,&nbsp;Antrea Christou ,&nbsp;Kitty Currier ,&nbsp;Abhilekha Dalal ,&nbsp;Colby K. Fisher ,&nbsp;Pascal Hitzler ,&nbsp;Krzysztof Janowicz ,&nbsp;Wenwen Li ,&nbsp;Zilong Liu ,&nbsp;Mohammad Saeid Mahdavinejad ,&nbsp;Gengchen Mai ,&nbsp;Dean Rehberger ,&nbsp;Mark Schildhauer ,&nbsp;Meilin Shi ,&nbsp;Sanaz Saki Norouzi ,&nbsp;Yuanyuan Tian ,&nbsp;Sizhe Wang ,&nbsp;Rui Zhu","doi":"10.1016/j.websem.2024.100842","DOIUrl":null,"url":null,"abstract":"<div><div>KnowWhereGraph is one of the largest fully publicly available geospatial knowledge graphs. It includes data from 30 layers on natural hazards (e.g., hurricanes, wildfires), climate variables (e.g., air temperature, precipitation), soil properties, crop and land-cover types, demographics, and human health, various place and region identifiers, among other themes. These have been leveraged through the graph by a variety of applications to address challenges in food security and agricultural supply chains; sustainability related to soil conservation practices and farm labor; and delivery of emergency humanitarian aid following a disaster. In this paper, we introduce the ontology that acts as the schema for KnowWhereGraph. This broad overview provides insight into the requirements and design specifications for the graph and its schema, including the development methodology (modular ontology modeling) and the resources utilized to implement, materialize, and deploy KnowWhereGraph with its end-user interfaces and public query SPARQL endpoint.</div></div>","PeriodicalId":49951,"journal":{"name":"Journal of Web Semantics","volume":"84 ","pages":"Article 100842"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Semantics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570826824000283","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

KnowWhereGraph is one of the largest fully publicly available geospatial knowledge graphs. It includes data from 30 layers on natural hazards (e.g., hurricanes, wildfires), climate variables (e.g., air temperature, precipitation), soil properties, crop and land-cover types, demographics, and human health, various place and region identifiers, among other themes. These have been leveraged through the graph by a variety of applications to address challenges in food security and agricultural supply chains; sustainability related to soil conservation practices and farm labor; and delivery of emergency humanitarian aid following a disaster. In this paper, we introduce the ontology that acts as the schema for KnowWhereGraph. This broad overview provides insight into the requirements and design specifications for the graph and its schema, including the development methodology (modular ontology modeling) and the resources utilized to implement, materialize, and deploy KnowWhereGraph with its end-user interfaces and public query SPARQL endpoint.
KnowWhereGraph本体
KnowWhereGraph是最大的完全公开的地理空间知识图谱之一。它包括来自30层的数据,涉及自然灾害(如飓风、野火)、气候变量(如气温、降水)、土壤特性、作物和土地覆盖类型、人口统计和人类健康、各个地方和区域标识符等主题。通过图表,这些已经被各种应用程序用来解决粮食安全和农业供应链方面的挑战;与土壤保持措施和农业劳动力相关的可持续性;在灾难发生后提供紧急人道主义援助。在本文中,我们引入了本体作为知识库的模式。这个广泛的概述提供了对图及其模式的需求和设计规范的深入了解,包括开发方法(模块化本体建模)和用于实现、具体化和部署KnowWhereGraph及其最终用户界面和公共查询SPARQL端点的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Web Semantics
Journal of Web Semantics 工程技术-计算机:人工智能
CiteScore
6.20
自引率
12.00%
发文量
22
审稿时长
14.6 weeks
期刊介绍: The Journal of Web Semantics is an interdisciplinary journal based on research and applications of various subject areas that contribute to the development of a knowledge-intensive and intelligent service Web. These areas include: knowledge technologies, ontology, agents, databases and the semantic grid, obviously disciplines like information retrieval, language technology, human-computer interaction and knowledge discovery are of major relevance as well. All aspects of the Semantic Web development are covered. The publication of large-scale experiments and their analysis is also encouraged to clearly illustrate scenarios and methods that introduce semantics into existing Web interfaces, contents and services. The journal emphasizes the publication of papers that combine theories, methods and experiments from different subject areas in order to deliver innovative semantic methods and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信