{"title":"Integrating Knowledge Graphs with Symbolic AI: The Path to Interpretable Hybrid AI Systems in Medicine","authors":"Maria-Esther Vidal , Yashrajsinh Chudasama , Hao Huang , Disha Purohit , Maria Torrente","doi":"10.1016/j.websem.2024.100856","DOIUrl":null,"url":null,"abstract":"<div><div>Knowledge Graphs (KGs) are graph-based structures that integrate heterogeneous data, capture domain knowledge, and enable explainable AI through symbolic reasoning. This position paper examines the challenges and research opportunities in integrating KGs with neuro-symbolic AI, highlighting their potential to enhance explainability, scalability, and context-aware reasoning in hybrid AI systems. Using a lung cancer use case, we illustrate how hybrid approaches address tasks such as link prediction—uncovering hidden relationships in medical data—and counterfactual reasoning—analyzing alternative scenarios to understand causal factors. The discussion is framed around TrustKG, which demonstrates how constraint validation, causal reasoning, and user-centric communication can support transparent and reliable decision-making. Additionally, we identify current limitations of KGs, including gaps in knowledge coverage, evolving data integration challenges, and the need for improved usability and impact assessment. These insights are not limited to healthcare but extend to other domains like energy, manufacturing, and mobility, showcasing the broad applicability of KGs. Finally, we propose research directions to unlock their full potential in building robust, transparent, and widely adopted real-world applications.</div></div>","PeriodicalId":49951,"journal":{"name":"Journal of Web Semantics","volume":"84 ","pages":"Article 100856"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Semantics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570826824000428","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Knowledge Graphs (KGs) are graph-based structures that integrate heterogeneous data, capture domain knowledge, and enable explainable AI through symbolic reasoning. This position paper examines the challenges and research opportunities in integrating KGs with neuro-symbolic AI, highlighting their potential to enhance explainability, scalability, and context-aware reasoning in hybrid AI systems. Using a lung cancer use case, we illustrate how hybrid approaches address tasks such as link prediction—uncovering hidden relationships in medical data—and counterfactual reasoning—analyzing alternative scenarios to understand causal factors. The discussion is framed around TrustKG, which demonstrates how constraint validation, causal reasoning, and user-centric communication can support transparent and reliable decision-making. Additionally, we identify current limitations of KGs, including gaps in knowledge coverage, evolving data integration challenges, and the need for improved usability and impact assessment. These insights are not limited to healthcare but extend to other domains like energy, manufacturing, and mobility, showcasing the broad applicability of KGs. Finally, we propose research directions to unlock their full potential in building robust, transparent, and widely adopted real-world applications.
期刊介绍:
The Journal of Web Semantics is an interdisciplinary journal based on research and applications of various subject areas that contribute to the development of a knowledge-intensive and intelligent service Web. These areas include: knowledge technologies, ontology, agents, databases and the semantic grid, obviously disciplines like information retrieval, language technology, human-computer interaction and knowledge discovery are of major relevance as well. All aspects of the Semantic Web development are covered. The publication of large-scale experiments and their analysis is also encouraged to clearly illustrate scenarios and methods that introduce semantics into existing Web interfaces, contents and services. The journal emphasizes the publication of papers that combine theories, methods and experiments from different subject areas in order to deliver innovative semantic methods and applications.