Exacerbation of polyethylene microplastics in animal models of DSS-induced colitis through damage to intestinal epithelial cell conjunctions

IF 2.9 Q2 TOXICOLOGY
Minkyoung Sung , Yeon-Ji Lee , Soo-Eun Sung , Kyung-Ku Kang , Jae Woo Park , Yujeong Lee , Dongmin Kim , Sunjong Lee , Joo-Hee Choi , Sijoon Lee
{"title":"Exacerbation of polyethylene microplastics in animal models of DSS-induced colitis through damage to intestinal epithelial cell conjunctions","authors":"Minkyoung Sung ,&nbsp;Yeon-Ji Lee ,&nbsp;Soo-Eun Sung ,&nbsp;Kyung-Ku Kang ,&nbsp;Jae Woo Park ,&nbsp;Yujeong Lee ,&nbsp;Dongmin Kim ,&nbsp;Sunjong Lee ,&nbsp;Joo-Hee Choi ,&nbsp;Sijoon Lee","doi":"10.1016/j.crtox.2025.100217","DOIUrl":null,"url":null,"abstract":"<div><div>Microplastics are pollutants that occur in various environments and habitats. Inflammatory bowel disease (IBD) is a chronic inflammatory disease accompanied with diarrhea, and the number of patients has increased worldwide. In this study, manufactured fragmented polyethylene-microplastics in the size range of 10–30 ㎛, were oxidized by exposure to ultraviolet light, and then administered to a dextran sodium sulfate-induced colitis mouse model to observe the effects of polyethylene-microplastics on IBD. In the microplastics-treated groups, an increase in disease activity index score, histopathological score, and a decrease in the areas of goblet cells were observed. In addition, the tight junction proteins, ZO-1 and Occludin, were significantly decreased, whereas MPO was significantly increased. Interestingly, E-cadherin, which is an adheren junction, was also decreased, presumably because of the physical effects of microplastics. The results suggest that polyethylene-microplastics worsen IBD and microplastics can affect not only tight junctions, but also adheren junctions.</div></div>","PeriodicalId":11236,"journal":{"name":"Current Research in Toxicology","volume":"8 ","pages":"Article 100217"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666027X25000039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microplastics are pollutants that occur in various environments and habitats. Inflammatory bowel disease (IBD) is a chronic inflammatory disease accompanied with diarrhea, and the number of patients has increased worldwide. In this study, manufactured fragmented polyethylene-microplastics in the size range of 10–30 ㎛, were oxidized by exposure to ultraviolet light, and then administered to a dextran sodium sulfate-induced colitis mouse model to observe the effects of polyethylene-microplastics on IBD. In the microplastics-treated groups, an increase in disease activity index score, histopathological score, and a decrease in the areas of goblet cells were observed. In addition, the tight junction proteins, ZO-1 and Occludin, were significantly decreased, whereas MPO was significantly increased. Interestingly, E-cadherin, which is an adheren junction, was also decreased, presumably because of the physical effects of microplastics. The results suggest that polyethylene-microplastics worsen IBD and microplastics can affect not only tight junctions, but also adheren junctions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Research in Toxicology
Current Research in Toxicology Environmental Science-Health, Toxicology and Mutagenesis
CiteScore
4.70
自引率
3.00%
发文量
33
审稿时长
82 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信