Liying Li , Yifei Gao , Peiwen Xia , Sijie Lin , Peijin Cong , Junlong Zhou
{"title":"Reinforcement learning based offloading and resource allocation for multi-intelligent vehicles in green edge-cloud computing","authors":"Liying Li , Yifei Gao , Peiwen Xia , Sijie Lin , Peijin Cong , Junlong Zhou","doi":"10.1016/j.comcom.2025.108051","DOIUrl":null,"url":null,"abstract":"<div><div>Green edge-cloud computing (GECC) collaborative service architecture has become one of the mainstream frameworks for real-time intensive multi-intelligent vehicle applications in intelligent transportation systems (ITS). In GECC systems, effective task offloading and resource allocation are critical to system performance and efficiency. Existing works on task offloading and resource allocation for multi-intelligent vehicles in GECC systems focus on designing static methods, which offload tasks once or a fixed number of times. This offloading manner may lead to low resource utilization due to congestion on edge servers and is not suitable for ITS with dynamically changing parameters such as bandwidth. To solve the above problems, we present a dynamic task offloading and resource allocation method, which allows tasks to be offloaded an arbitrary number of times under time and resource constraints. Specifically, we consider the characteristics of tasks and propose a remaining model to obtain the states of vehicles and tasks in real-time. Then we present a task offloading and resource allocation method considering both time and energy according to a designed real-time multi-agent deep deterministic policy gradient (RT-MADDPG) model. Our approach can offload tasks in arbitrary number of times under resource and time constraints, and can dynamically adjust the task offloading and resource allocation solutions according to changing system states to maximize system utility, which considers both task processing time and energy. Extensive simulation results indicate that the proposed RT-MADDPG method can effectively improve the utility of ITS compared to 2 benchmarking methods.</div></div>","PeriodicalId":55224,"journal":{"name":"Computer Communications","volume":"232 ","pages":"Article 108051"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140366425000088","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Green edge-cloud computing (GECC) collaborative service architecture has become one of the mainstream frameworks for real-time intensive multi-intelligent vehicle applications in intelligent transportation systems (ITS). In GECC systems, effective task offloading and resource allocation are critical to system performance and efficiency. Existing works on task offloading and resource allocation for multi-intelligent vehicles in GECC systems focus on designing static methods, which offload tasks once or a fixed number of times. This offloading manner may lead to low resource utilization due to congestion on edge servers and is not suitable for ITS with dynamically changing parameters such as bandwidth. To solve the above problems, we present a dynamic task offloading and resource allocation method, which allows tasks to be offloaded an arbitrary number of times under time and resource constraints. Specifically, we consider the characteristics of tasks and propose a remaining model to obtain the states of vehicles and tasks in real-time. Then we present a task offloading and resource allocation method considering both time and energy according to a designed real-time multi-agent deep deterministic policy gradient (RT-MADDPG) model. Our approach can offload tasks in arbitrary number of times under resource and time constraints, and can dynamically adjust the task offloading and resource allocation solutions according to changing system states to maximize system utility, which considers both task processing time and energy. Extensive simulation results indicate that the proposed RT-MADDPG method can effectively improve the utility of ITS compared to 2 benchmarking methods.
期刊介绍:
Computer and Communications networks are key infrastructures of the information society with high socio-economic value as they contribute to the correct operations of many critical services (from healthcare to finance and transportation). Internet is the core of today''s computer-communication infrastructures. This has transformed the Internet, from a robust network for data transfer between computers, to a global, content-rich, communication and information system where contents are increasingly generated by the users, and distributed according to human social relations. Next-generation network technologies, architectures and protocols are therefore required to overcome the limitations of the legacy Internet and add new capabilities and services. The future Internet should be ubiquitous, secure, resilient, and closer to human communication paradigms.
Computer Communications is a peer-reviewed international journal that publishes high-quality scientific articles (both theory and practice) and survey papers covering all aspects of future computer communication networks (on all layers, except the physical layer), with a special attention to the evolution of the Internet architecture, protocols, services, and applications.