Sources and fates of NO3− and PO43− in an alluvial plain wetland - Insights from the Auzon oxbow and the alluvial aquifer of the Allier (Auvergne, France)

IF 3.1 3区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Cyril Aumar , Hélène Celle , Mélanie Quenet , Olivier Voldoire , Elisabeth Allain , Alexandre Garreau , Nicolas Caillon , Pierre Nevers , Jean-Luc Devidal , Gilles Mailhot , Aude Beauger
{"title":"Sources and fates of NO3− and PO43− in an alluvial plain wetland - Insights from the Auzon oxbow and the alluvial aquifer of the Allier (Auvergne, France)","authors":"Cyril Aumar ,&nbsp;Hélène Celle ,&nbsp;Mélanie Quenet ,&nbsp;Olivier Voldoire ,&nbsp;Elisabeth Allain ,&nbsp;Alexandre Garreau ,&nbsp;Nicolas Caillon ,&nbsp;Pierre Nevers ,&nbsp;Jean-Luc Devidal ,&nbsp;Gilles Mailhot ,&nbsp;Aude Beauger","doi":"10.1016/j.apgeochem.2024.106270","DOIUrl":null,"url":null,"abstract":"<div><div>The continental hydrosystems of wetlands play fundamental socio-economic and environmental roles in all aquatic environments. These ecosystems, when located at the interface between surface and groundwater, such as oxbows, are of crucial importance in regulating water and nutrient flows. They help control water quality and provide ideal habitats for often fragile species. The transfer of contaminants into the different compartments of the groundwater-wetland-river continuum is difficult to characterize because they are most often of different types and origins within the same hydrosystem. The objective of this study is to characterize water quality and water exchange using a multi-tracer approach combining monthly hydrochemical monitoring, isotopic characterization of NO<sub>3</sub><sup>−</sup> molecules (δ<sup>18</sup>O<sub>NO3</sub> and δ<sup>15</sup>N<sub>NO3</sub>) and concentration of chemical micropollutant particles. This methodology is applied to a fluvial annex of the Allier River, the Auzon oxbow hydrosystem, subject to moderate environmental and anthropogenic pressure (low level of industrialization and urbanization, mixed conventional farming). Nitrate (NO<sub>3</sub><sup>−</sup>) and phosphate (PO<sub>4</sub><sup>3−</sup>) concentrations do not behave in the same way over time: NO<sub>3</sub><sup>−</sup> has a seasonal dynamic, whereas phosphates are disconnected from the hydrological regime. Some subsystems of the Auzon oxbow are undergoing denitrification, demonstrating the importance of preserving these environments for their nutrient regulation potential. As for chemical micropollutants and PO<sub>4</sub><sup>3−</sup>, the low overall concentration of these two contaminants, coupled with the high dilution potential of the Auzon oxbow hydrosystem, means that average concentrations remain within acceptable standards for surface waters. Based on these results, the Auzon hydrosystem is maintaining good ecological quality despite nutrient flows from multiple sources. The multi-tracer approach used in this study demonstrates its effectiveness in determining the origin of nutrients, and it could be applied to other studies in contexts where environmental and societal pressures are significantly higher.</div></div>","PeriodicalId":8064,"journal":{"name":"Applied Geochemistry","volume":"179 ","pages":"Article 106270"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0883292724003755","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The continental hydrosystems of wetlands play fundamental socio-economic and environmental roles in all aquatic environments. These ecosystems, when located at the interface between surface and groundwater, such as oxbows, are of crucial importance in regulating water and nutrient flows. They help control water quality and provide ideal habitats for often fragile species. The transfer of contaminants into the different compartments of the groundwater-wetland-river continuum is difficult to characterize because they are most often of different types and origins within the same hydrosystem. The objective of this study is to characterize water quality and water exchange using a multi-tracer approach combining monthly hydrochemical monitoring, isotopic characterization of NO3 molecules (δ18ONO3 and δ15NNO3) and concentration of chemical micropollutant particles. This methodology is applied to a fluvial annex of the Allier River, the Auzon oxbow hydrosystem, subject to moderate environmental and anthropogenic pressure (low level of industrialization and urbanization, mixed conventional farming). Nitrate (NO3) and phosphate (PO43−) concentrations do not behave in the same way over time: NO3 has a seasonal dynamic, whereas phosphates are disconnected from the hydrological regime. Some subsystems of the Auzon oxbow are undergoing denitrification, demonstrating the importance of preserving these environments for their nutrient regulation potential. As for chemical micropollutants and PO43−, the low overall concentration of these two contaminants, coupled with the high dilution potential of the Auzon oxbow hydrosystem, means that average concentrations remain within acceptable standards for surface waters. Based on these results, the Auzon hydrosystem is maintaining good ecological quality despite nutrient flows from multiple sources. The multi-tracer approach used in this study demonstrates its effectiveness in determining the origin of nutrients, and it could be applied to other studies in contexts where environmental and societal pressures are significantly higher.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Geochemistry
Applied Geochemistry 地学-地球化学与地球物理
CiteScore
6.10
自引率
8.80%
发文量
272
审稿时长
65 days
期刊介绍: Applied Geochemistry is an international journal devoted to publication of original research papers, rapid research communications and selected review papers in geochemistry and urban geochemistry which have some practical application to an aspect of human endeavour, such as the preservation of the environment, health, waste disposal and the search for resources. Papers on applications of inorganic, organic and isotope geochemistry and geochemical processes are therefore welcome provided they meet the main criterion. Spatial and temporal monitoring case studies are only of interest to our international readership if they present new ideas of broad application. Topics covered include: (1) Environmental geochemistry (including natural and anthropogenic aspects, and protection and remediation strategies); (2) Hydrogeochemistry (surface and groundwater); (3) Medical (urban) geochemistry; (4) The search for energy resources (in particular unconventional oil and gas or emerging metal resources); (5) Energy exploitation (in particular geothermal energy and CCS); (6) Upgrading of energy and mineral resources where there is a direct geochemical application; and (7) Waste disposal, including nuclear waste disposal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信