Training size predictably improves machine learning-based epileptic seizure forecasting from wearables

Mustafa Halimeh , Michele Jackson , Tobias Loddenkemper , Christian Meisel
{"title":"Training size predictably improves machine learning-based epileptic seizure forecasting from wearables","authors":"Mustafa Halimeh ,&nbsp;Michele Jackson ,&nbsp;Tobias Loddenkemper ,&nbsp;Christian Meisel","doi":"10.1016/j.neuri.2024.100184","DOIUrl":null,"url":null,"abstract":"<div><div>Objective: Wrist-worn wearable devices that monitor autonomous nervous system function and movement have shown promise in providing non-invasive, broadly applicable seizure forecasts that increase in accuracy with larger training size. Nevertheless, challenges related to missing validation, small number of enrolled patients, insufficient training data, and lack of patient seizure cycles data hinder its clinical implementation. Here we sought to prospectively validate a previously implemented seizure forecasting algorithm using a larger cohort of pediatric patients with epilepsy (pwe), improve it by including information on seizure cycles, and (3) assess the utility of precise power-laws to predict performance as a function of dataset size.</div><div>Methods: We used video-EEG recordings from 166 pwe as ground-truth for seizures, recorded electrodermal activity (EDA), peripheral body temperature (TEMP), blood volume pulse (BVP), accelerometery (ACC) and applied a deep neural LSTM network model (NN) on these data along with information on 24-hour cycles to forecast seizures in a leave-one-subject-out cross validation. Evaluations were made using improvement over chance (IoC) and the Brier skill score (BSS), which measured the improvement of the NN Brier score compared to the Brier score of a rate-matched random (RMR) forecast.</div><div>Results: Performance quantified by IoC and BSS increased with training data following precise power-law scaling laws, thereby exceeding prior reported performance levels from smaller datasets. Including information on 24-hour seizure cycles further improved performance. For the largest training set we achieved significant IoC in 68% of pwe, an IoC of 27.3% and a BSS of 0.087.</div><div>Interpretation: Our results validate a previous forecast approach and indicate that performance improves predictably as a function of dataset size following power-law scaling.</div></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"5 1","pages":"Article 100184"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528624000293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Wrist-worn wearable devices that monitor autonomous nervous system function and movement have shown promise in providing non-invasive, broadly applicable seizure forecasts that increase in accuracy with larger training size. Nevertheless, challenges related to missing validation, small number of enrolled patients, insufficient training data, and lack of patient seizure cycles data hinder its clinical implementation. Here we sought to prospectively validate a previously implemented seizure forecasting algorithm using a larger cohort of pediatric patients with epilepsy (pwe), improve it by including information on seizure cycles, and (3) assess the utility of precise power-laws to predict performance as a function of dataset size.
Methods: We used video-EEG recordings from 166 pwe as ground-truth for seizures, recorded electrodermal activity (EDA), peripheral body temperature (TEMP), blood volume pulse (BVP), accelerometery (ACC) and applied a deep neural LSTM network model (NN) on these data along with information on 24-hour cycles to forecast seizures in a leave-one-subject-out cross validation. Evaluations were made using improvement over chance (IoC) and the Brier skill score (BSS), which measured the improvement of the NN Brier score compared to the Brier score of a rate-matched random (RMR) forecast.
Results: Performance quantified by IoC and BSS increased with training data following precise power-law scaling laws, thereby exceeding prior reported performance levels from smaller datasets. Including information on 24-hour seizure cycles further improved performance. For the largest training set we achieved significant IoC in 68% of pwe, an IoC of 27.3% and a BSS of 0.087.
Interpretation: Our results validate a previous forecast approach and indicate that performance improves predictably as a function of dataset size following power-law scaling.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroscience informatics
Neuroscience informatics Surgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology
自引率
0.00%
发文量
0
审稿时长
57 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信