Energy efficiency and productivity of a Pressure Swing Adsorption plant to purify bioethanol: Disturbance attenuation through geometric control

IF 3 Q2 ENGINEERING, CHEMICAL
Jesse Y. Rumbo-Morales , Gerardo Ortiz-Torres , Felipe D.J. Sorcia-Vázquez , Carlos Alberto Torres-Cantero , Jair Gómez Radilla , Mario Martínez García , Julio César Rodríguez-Cerda , Antonio Márquez Rosales , Moises Ramos-Martinez , Juan Carlos Mixteco-Sánchez , Mayra G. Mena-Enriquez , Mario A. Juarez
{"title":"Energy efficiency and productivity of a Pressure Swing Adsorption plant to purify bioethanol: Disturbance attenuation through geometric control","authors":"Jesse Y. Rumbo-Morales ,&nbsp;Gerardo Ortiz-Torres ,&nbsp;Felipe D.J. Sorcia-Vázquez ,&nbsp;Carlos Alberto Torres-Cantero ,&nbsp;Jair Gómez Radilla ,&nbsp;Mario Martínez García ,&nbsp;Julio César Rodríguez-Cerda ,&nbsp;Antonio Márquez Rosales ,&nbsp;Moises Ramos-Martinez ,&nbsp;Juan Carlos Mixteco-Sánchez ,&nbsp;Mayra G. Mena-Enriquez ,&nbsp;Mario A. Juarez","doi":"10.1016/j.dche.2024.100209","DOIUrl":null,"url":null,"abstract":"<div><div>Biofuels produced from renewable raw materials, in this case bioethanol, provide a sustainable and renewable energy source for the future, as bioethanol positively impacts the economy, the environment, and society. Bioethanol is an alternative and immediate solution to mitigate the main greenhouse gases generated by transportation and industries that use fossil fuels. However, to produce bioethanol it is necessary to use advanced dehydration processes or technologies. Currently, azeotropic distillation, extractive distillation, and the Pressure Swing Adsorption (PSA) process using selective zeolites on water molecules are used. This PSA process has shown high selectivity, high yield, and high energy efficiency for producing anhydrous ethanol compared to other technologies. This work aims to implement automatic control laws (geometric and PID) to maintain stable the desired purity (99.5%), have higher bioethanol recovery and generate higher productivity using less energy. Both controllers performed adequately on the PSA bioethanol-producing plant, however, the geometric control presented greater robustness against disturbances, achieving to maintain stable bioethanol purity above 99% by wt, generating a recovery of 73.62%, with productivity of 59.07 <span><math><mrow><mi>k</mi><mi>m</mi><mi>o</mi><mi>l</mi></mrow></math></span> and using an energy efficiency of 59.21%. Using this control law, it was possible to use the entire length of the columns to adsorb a greater amount of water molecules and achieve higher production.</div></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"14 ","pages":"Article 100209"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508124000711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Biofuels produced from renewable raw materials, in this case bioethanol, provide a sustainable and renewable energy source for the future, as bioethanol positively impacts the economy, the environment, and society. Bioethanol is an alternative and immediate solution to mitigate the main greenhouse gases generated by transportation and industries that use fossil fuels. However, to produce bioethanol it is necessary to use advanced dehydration processes or technologies. Currently, azeotropic distillation, extractive distillation, and the Pressure Swing Adsorption (PSA) process using selective zeolites on water molecules are used. This PSA process has shown high selectivity, high yield, and high energy efficiency for producing anhydrous ethanol compared to other technologies. This work aims to implement automatic control laws (geometric and PID) to maintain stable the desired purity (99.5%), have higher bioethanol recovery and generate higher productivity using less energy. Both controllers performed adequately on the PSA bioethanol-producing plant, however, the geometric control presented greater robustness against disturbances, achieving to maintain stable bioethanol purity above 99% by wt, generating a recovery of 73.62%, with productivity of 59.07 kmol and using an energy efficiency of 59.21%. Using this control law, it was possible to use the entire length of the columns to adsorb a greater amount of water molecules and achieve higher production.
变压吸附装置净化生物乙醇的能源效率和生产力:通过几何控制干扰衰减
由可再生原料生产的生物燃料,在这种情况下是生物乙醇,为未来提供了一种可持续的可再生能源,因为生物乙醇对经济、环境和社会都有积极的影响。生物乙醇是缓解使用化石燃料的运输和工业产生的主要温室气体的一种替代和直接的解决方案。然而,为了生产生物乙醇,必须采用先进的脱水工艺或技术。目前常用的方法有共沸精馏、萃取精馏和选择性沸石对水分子的变压吸附(PSA)法。与其他工艺相比,该工艺具有高选择性、高收率和高能效。本工作旨在实现自动控制律(几何和PID),以保持稳定的所需纯度(99.5%),具有更高的生物乙醇回收率,并以更少的能量产生更高的生产率。两种控制器在PSA生物乙醇生产装置上均表现良好,但几何控制对干扰具有更强的鲁棒性,实现了生物乙醇纯度稳定在99%以上,回收率为73.62%,生产率为59.07 kmol,能源效率为59.21%。使用该控制律,可以使用整个色谱柱的长度来吸附更多的水分子并实现更高的产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信