Photochemical internalization of mRNA using a photosensitizer and nucleic acid carriers

Hayaki Maemoto , Ryohei Suzaki , Kazunori Watanabe , Keiji Itaka , Takashi Ohtsuki
{"title":"Photochemical internalization of mRNA using a photosensitizer and nucleic acid carriers","authors":"Hayaki Maemoto ,&nbsp;Ryohei Suzaki ,&nbsp;Kazunori Watanabe ,&nbsp;Keiji Itaka ,&nbsp;Takashi Ohtsuki","doi":"10.1016/j.ejmcr.2024.100242","DOIUrl":null,"url":null,"abstract":"<div><div>mRNA has great potential for therapeutic applications because it can encode a variety of proteins and antigens, in addition to advantages over DNA in terms of gene expression without genomic integration, nuclear localization, or transcription. However, therapeutic applications of mRNA require safe and effective delivery into target cells. Therefore, we aimed to investigate photochemical internalization (PCI) as a promising strategy for delivering mRNA to target cells. In this strategy, mRNA is taken up into cells by endocytosis, accumulates in endosomes, and is released in a light-dependent manner from the endosomes using an endosome-accumulating photosensitizer, aluminum phthalocyanine disulfonate (AlPcS<sub>2a</sub>), in combination with nucleic acid carrier molecules. We compared the efficacy of various nucleic acid carriers, including branched polyethyleneimine (bPEI) and poly{N'-[N-(2-aminoethyl)-2-aminoethyl] aspartamide} (PAsp(DET)) under the same conditions for PCI-based mRNA delivery. Our results indicated that bPEI and PAsp(DET) at low N/P ratios exhibited efficient light-enhancement of mRNA expression by PCI with AlPcS<sub>2a</sub>. Notably, bPEI exhibited the highest light-dependent mRNA delivery among the carriers evaluated (including cationic polymers, cationic peptides, and lipids), whereas PAsp(DET) showed promise for clinical use because of its lower toxicity compared with bPEI. This PCI strategy allows effective cytosolic mRNA delivery at low N/P ratios, thereby reducing cationic carrier molecule-induced cytotoxicity. This method allows spatiotemporal control of protein expression and holds potential for novel light-dependent mRNA therapies. Overall, this study provided valuable insights into optimizing mRNA delivery systems for therapeutic applications.</div></div>","PeriodicalId":12015,"journal":{"name":"European Journal of Medicinal Chemistry Reports","volume":"13 ","pages":"Article 100242"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772417424001146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

mRNA has great potential for therapeutic applications because it can encode a variety of proteins and antigens, in addition to advantages over DNA in terms of gene expression without genomic integration, nuclear localization, or transcription. However, therapeutic applications of mRNA require safe and effective delivery into target cells. Therefore, we aimed to investigate photochemical internalization (PCI) as a promising strategy for delivering mRNA to target cells. In this strategy, mRNA is taken up into cells by endocytosis, accumulates in endosomes, and is released in a light-dependent manner from the endosomes using an endosome-accumulating photosensitizer, aluminum phthalocyanine disulfonate (AlPcS2a), in combination with nucleic acid carrier molecules. We compared the efficacy of various nucleic acid carriers, including branched polyethyleneimine (bPEI) and poly{N'-[N-(2-aminoethyl)-2-aminoethyl] aspartamide} (PAsp(DET)) under the same conditions for PCI-based mRNA delivery. Our results indicated that bPEI and PAsp(DET) at low N/P ratios exhibited efficient light-enhancement of mRNA expression by PCI with AlPcS2a. Notably, bPEI exhibited the highest light-dependent mRNA delivery among the carriers evaluated (including cationic polymers, cationic peptides, and lipids), whereas PAsp(DET) showed promise for clinical use because of its lower toxicity compared with bPEI. This PCI strategy allows effective cytosolic mRNA delivery at low N/P ratios, thereby reducing cationic carrier molecule-induced cytotoxicity. This method allows spatiotemporal control of protein expression and holds potential for novel light-dependent mRNA therapies. Overall, this study provided valuable insights into optimizing mRNA delivery systems for therapeutic applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信