Understanding risk factors of post-stroke mortality

David Castro , Nuno Antonio , Ana Marreiros , Hipólito Nzwalo
{"title":"Understanding risk factors of post-stroke mortality","authors":"David Castro ,&nbsp;Nuno Antonio ,&nbsp;Ana Marreiros ,&nbsp;Hipólito Nzwalo","doi":"10.1016/j.neuri.2024.100181","DOIUrl":null,"url":null,"abstract":"<div><div>Stroke is one of the leading causes of death worldwide. Understanding the risk factors for post-stroke mortality is crucial for improving patient outcomes. This study analyzes and predicts post-stroke mortality using the modified Rankin Scale (mRS), a functional neurological evaluation scale. Several Machine Learning models were developed and assessed using a dataset of 332 stroke patients from Hospital de Faro, Portugal, from 2016 to 2018. The Random Forest model outperformed others, achieving an accuracy of 98.5% and a recall of 91.3. Twenty-four risk factors were identified, with stroke severity as the most critical. These findings provide healthcare professionals with valuable tools for early identification and intervention for high-risk stroke patients, enabling informed decision-making and customized treatment plans. This research advances healthcare predictive analytics, offering a precise mortality prediction model and a comprehensive analysis of risk factors, potentially improving clinical outcomes and reducing mortality rates. Future applications could extend to patient monitoring and management across various medical conditions.</div></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"5 1","pages":"Article 100181"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528624000268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stroke is one of the leading causes of death worldwide. Understanding the risk factors for post-stroke mortality is crucial for improving patient outcomes. This study analyzes and predicts post-stroke mortality using the modified Rankin Scale (mRS), a functional neurological evaluation scale. Several Machine Learning models were developed and assessed using a dataset of 332 stroke patients from Hospital de Faro, Portugal, from 2016 to 2018. The Random Forest model outperformed others, achieving an accuracy of 98.5% and a recall of 91.3. Twenty-four risk factors were identified, with stroke severity as the most critical. These findings provide healthcare professionals with valuable tools for early identification and intervention for high-risk stroke patients, enabling informed decision-making and customized treatment plans. This research advances healthcare predictive analytics, offering a precise mortality prediction model and a comprehensive analysis of risk factors, potentially improving clinical outcomes and reducing mortality rates. Future applications could extend to patient monitoring and management across various medical conditions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroscience informatics
Neuroscience informatics Surgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology
自引率
0.00%
发文量
0
审稿时长
57 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信