Moussa Mohsenpourian , Amir Abolfazl Suratgar , Heidar Ali Talebi , Mahsa Arzani , Abdorreza Naser Moghadasi , Seyed Matin Malakouti , Mohammad Bagher Menhaj
{"title":"Design of a computational intelligence system for detection of multiple sclerosis with visual evoked potentials","authors":"Moussa Mohsenpourian , Amir Abolfazl Suratgar , Heidar Ali Talebi , Mahsa Arzani , Abdorreza Naser Moghadasi , Seyed Matin Malakouti , Mohammad Bagher Menhaj","doi":"10.1016/j.neuri.2024.100177","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a new approach for modification of membership functions of a fuzzy inference system (FIS) is demonstrated, in order to serve as a pattern recognition tool for classification of patients diagnosed with multiple sclerosis (MS) from healthy controls (HC) using their visually evoked potential (VEP) recordings. The new approach utilizes Krill Herd (KH) optimization algorithm to modify parameters associated with membership functions of both inputs and outputs of an initial Sugeno-type FIS, while making sure that the error corresponding to training of the network is minimized.</div><div>This novel pattern recognition system is applied for classification of VEP signals in 11 MS patients and 11 HC's. A feature extraction routine was performed on the VEP signals, and later substantial features were selected in an optimized feature subset selection scheme employing Ant Colony Optimization (ACO) and Simulated Annealing (SA) algorithms. This alone provided further information regarding clinical value of many previously unused VEP features as an aide for making the diagnosis. The newly designed computational intelligence system is shown to outperform popular classifiers (e.g., multilayer perceptron, support-vector machine, etc.) and was able to distinguish MS patients from HC's with an overall accuracy of 90%.</div></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"5 1","pages":"Article 100177"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528624000220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a new approach for modification of membership functions of a fuzzy inference system (FIS) is demonstrated, in order to serve as a pattern recognition tool for classification of patients diagnosed with multiple sclerosis (MS) from healthy controls (HC) using their visually evoked potential (VEP) recordings. The new approach utilizes Krill Herd (KH) optimization algorithm to modify parameters associated with membership functions of both inputs and outputs of an initial Sugeno-type FIS, while making sure that the error corresponding to training of the network is minimized.
This novel pattern recognition system is applied for classification of VEP signals in 11 MS patients and 11 HC's. A feature extraction routine was performed on the VEP signals, and later substantial features were selected in an optimized feature subset selection scheme employing Ant Colony Optimization (ACO) and Simulated Annealing (SA) algorithms. This alone provided further information regarding clinical value of many previously unused VEP features as an aide for making the diagnosis. The newly designed computational intelligence system is shown to outperform popular classifiers (e.g., multilayer perceptron, support-vector machine, etc.) and was able to distinguish MS patients from HC's with an overall accuracy of 90%.
Neuroscience informaticsSurgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology