On the effect of different samplings to the solution of parametric PDE eigenvalue problems

Daniele Boffi , Abdul Halim , Gopal Priyadarshi
{"title":"On the effect of different samplings to the solution of parametric PDE eigenvalue problems","authors":"Daniele Boffi ,&nbsp;Abdul Halim ,&nbsp;Gopal Priyadarshi","doi":"10.1016/j.exco.2024.100170","DOIUrl":null,"url":null,"abstract":"<div><div>The use of sparse sampling is a consolidated technique for the reduced order modeling of parametric PDEs. In this note we investigate the choice of sampling points within the framework of reduced order techniques for the approximation of eigenvalue problems originating from parametric PDEs. We use the standard proper orthogonal decomposition technique to obtain the basis of the reduced space and Galerkin orthogonal technique to get the reduced problem. We present some numerical results and observe that, as in the case of the source problem, also for eigenvalue problems the use of sparse sampling is a good idea and that, when the number of sampling points is assigned, sparse sampling provides better results than uniform sampling.</div><div>In the spirit of the journal, we present our results in the form of examples and counterexamples.</div></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"6 ","pages":"Article 100170"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X24000363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of sparse sampling is a consolidated technique for the reduced order modeling of parametric PDEs. In this note we investigate the choice of sampling points within the framework of reduced order techniques for the approximation of eigenvalue problems originating from parametric PDEs. We use the standard proper orthogonal decomposition technique to obtain the basis of the reduced space and Galerkin orthogonal technique to get the reduced problem. We present some numerical results and observe that, as in the case of the source problem, also for eigenvalue problems the use of sparse sampling is a good idea and that, when the number of sampling points is assigned, sparse sampling provides better results than uniform sampling.
In the spirit of the journal, we present our results in the form of examples and counterexamples.
不同采样对参数偏微分方程特征值问题解的影响
稀疏采样是参数偏微分方程降阶建模的一种巩固技术。在这篇文章中,我们研究了在降阶技术框架内采样点的选择,以近似源自参数偏微分方程的特征值问题。利用标准固有正交分解技术得到约简空间的基,利用伽辽金正交技术得到约简问题。我们给出了一些数值结果,并观察到,与源问题的情况一样,对于特征值问题,使用稀疏采样是一个好主意,并且当分配采样点的数量时,稀疏采样提供比均匀采样更好的结果。本着期刊的精神,我们以实例和反例的形式展示我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信