Influence of external electric field regulating hydrogen adsorption on graphene quantum dots, graphene quantum dots with defects, and metal-ion-doped graphene quantum dots

IF 3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Thanawit Kuamit , Fadjar Mulya , Sirilak Kongkaew , Vudhichai Parasuk
{"title":"Influence of external electric field regulating hydrogen adsorption on graphene quantum dots, graphene quantum dots with defects, and metal-ion-doped graphene quantum dots","authors":"Thanawit Kuamit ,&nbsp;Fadjar Mulya ,&nbsp;Sirilak Kongkaew ,&nbsp;Vudhichai Parasuk","doi":"10.1016/j.comptc.2024.115050","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen storage is crucial for efficient hydrogen energy utilization, but current materials often require extreme conditions, such as low temperatures (&lt;20.15 K) or high pressures (350–700 atm), and an ideal adsorption energy between −0.2 and −0.6 eV. This study employs density functional theory (DFT) to explore hydrogen adsorption on graphene quantum dots (GQDs), including pristine GQDs, nitrogen-substituted divacancy defect GQDs (4N-GQDs), and metal-ion-doped 4N-GQDs (M-4N-GQDs, M = Ti<sup>2+</sup>, Fe<sup>2+</sup>, Cu<sup>2+</sup>, Zn<sup>2+</sup>). Pristine and 4N-GQDs show comparable adsorption energies (−0.02 eV), while M-4N-GQDs exhibit stronger adsorption, ranging from −0.221 to −0.025 eV. Ti<sup>2+</sup>-4N-GQD achieves an optimal adsorption energy of −0.221 eV, making it highly suitable for hydrogen storage. The metal center’s charge transfer upon hydrogen adsorption influences binding strength. An external electric field (EEF) further reduces adsorption energy, promoting H<sub>2</sub> desorption. These results highlight Ti<sup>2+</sup>-4N-GQD’s potential for regulating H<sub>2</sub> adsorption and desorption in hydrogen storage applications.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1244 ","pages":"Article 115050"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X24005899","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen storage is crucial for efficient hydrogen energy utilization, but current materials often require extreme conditions, such as low temperatures (<20.15 K) or high pressures (350–700 atm), and an ideal adsorption energy between −0.2 and −0.6 eV. This study employs density functional theory (DFT) to explore hydrogen adsorption on graphene quantum dots (GQDs), including pristine GQDs, nitrogen-substituted divacancy defect GQDs (4N-GQDs), and metal-ion-doped 4N-GQDs (M-4N-GQDs, M = Ti2+, Fe2+, Cu2+, Zn2+). Pristine and 4N-GQDs show comparable adsorption energies (−0.02 eV), while M-4N-GQDs exhibit stronger adsorption, ranging from −0.221 to −0.025 eV. Ti2+-4N-GQD achieves an optimal adsorption energy of −0.221 eV, making it highly suitable for hydrogen storage. The metal center’s charge transfer upon hydrogen adsorption influences binding strength. An external electric field (EEF) further reduces adsorption energy, promoting H2 desorption. These results highlight Ti2+-4N-GQD’s potential for regulating H2 adsorption and desorption in hydrogen storage applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
10.70%
发文量
331
审稿时长
31 days
期刊介绍: Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信