An efficient algorithm for estimating profust failure probability function under the assumption of probable input and fuzzy state

IF 3.2 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Xiaomin Wu, Zhenzhou Lu, Yizhou Chen, Kaixuan Feng
{"title":"An efficient algorithm for estimating profust failure probability function under the assumption of probable input and fuzzy state","authors":"Xiaomin Wu,&nbsp;Zhenzhou Lu,&nbsp;Yizhou Chen,&nbsp;Kaixuan Feng","doi":"10.1016/j.fss.2024.109250","DOIUrl":null,"url":null,"abstract":"<div><div>Under the assumption of <strong>pro</strong>bable input and <strong>fu</strong>zzy <strong>st</strong>ate (profust), profust (also named as generalized) failure probability function (G-FPF), which varies with random input distribution parameters (DP) in the interested region, can reflect the effect of DP on structure safety and decouples the generalized reliability-based design optimization. The direct double-loop analysis of G-FPF, which repeatedly estimates the G-FPF values at different DP realizations, is time-consuming. Thus, this paper proposes a single-loop importance sampling (IS) method to estimate G-FPF by combining a variance reduction technique with a sample information-sharing strategy. The proposed method has two innovations. The first is constructing an optimal unified IS density (ISD), which is independent of the DP and envelops the interested DP region. By sharing the sample of the unified ISD, the double-loop analysis for G-FPF can be avoided, and by fusing the IS variance reduction technique, the efficiency of estimating G-FPF can be improved further. The second is designing an adaptive strategy to update the Kriging model of performance function, so that the computational cost, which is measured by the number of performance function evaluations while ensuring the acceptable precision of G-FPF estimation, can be reduced in approaching and sampling the optimal unified ISD as well as predicting the performance function at the sample of the optimal unified ISD. Moreover, the proposed method has wide applicability, and it has no restriction on the nonlinearity of the performance function and the size of the interested DP region, which is sufficiently verified by the presented examples.</div></div>","PeriodicalId":55130,"journal":{"name":"Fuzzy Sets and Systems","volume":"504 ","pages":"Article 109250"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Sets and Systems","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165011424003968","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Under the assumption of probable input and fuzzy state (profust), profust (also named as generalized) failure probability function (G-FPF), which varies with random input distribution parameters (DP) in the interested region, can reflect the effect of DP on structure safety and decouples the generalized reliability-based design optimization. The direct double-loop analysis of G-FPF, which repeatedly estimates the G-FPF values at different DP realizations, is time-consuming. Thus, this paper proposes a single-loop importance sampling (IS) method to estimate G-FPF by combining a variance reduction technique with a sample information-sharing strategy. The proposed method has two innovations. The first is constructing an optimal unified IS density (ISD), which is independent of the DP and envelops the interested DP region. By sharing the sample of the unified ISD, the double-loop analysis for G-FPF can be avoided, and by fusing the IS variance reduction technique, the efficiency of estimating G-FPF can be improved further. The second is designing an adaptive strategy to update the Kriging model of performance function, so that the computational cost, which is measured by the number of performance function evaluations while ensuring the acceptable precision of G-FPF estimation, can be reduced in approaching and sampling the optimal unified ISD as well as predicting the performance function at the sample of the optimal unified ISD. Moreover, the proposed method has wide applicability, and it has no restriction on the nonlinearity of the performance function and the size of the interested DP region, which is sufficiently verified by the presented examples.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fuzzy Sets and Systems
Fuzzy Sets and Systems 数学-计算机:理论方法
CiteScore
6.50
自引率
17.90%
发文量
321
审稿时长
6.1 months
期刊介绍: Since its launching in 1978, the journal Fuzzy Sets and Systems has been devoted to the international advancement of the theory and application of fuzzy sets and systems. The theory of fuzzy sets now encompasses a well organized corpus of basic notions including (and not restricted to) aggregation operations, a generalized theory of relations, specific measures of information content, a calculus of fuzzy numbers. Fuzzy sets are also the cornerstone of a non-additive uncertainty theory, namely possibility theory, and of a versatile tool for both linguistic and numerical modeling: fuzzy rule-based systems. Numerous works now combine fuzzy concepts with other scientific disciplines as well as modern technologies. In mathematics fuzzy sets have triggered new research topics in connection with category theory, topology, algebra, analysis. Fuzzy sets are also part of a recent trend in the study of generalized measures and integrals, and are combined with statistical methods. Furthermore, fuzzy sets have strong logical underpinnings in the tradition of many-valued logics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信