Bi-level data-driven enterprise-wide optimization with mixed-integer nonlinear scheduling problems

IF 3 Q2 ENGINEERING, CHEMICAL
Hasan Nikkhah , Zahir Aghayev , Amir Shahbazi , Vassilis M. Charitopoulos , Styliani Avraamidou , Burcu Beykal
{"title":"Bi-level data-driven enterprise-wide optimization with mixed-integer nonlinear scheduling problems","authors":"Hasan Nikkhah ,&nbsp;Zahir Aghayev ,&nbsp;Amir Shahbazi ,&nbsp;Vassilis M. Charitopoulos ,&nbsp;Styliani Avraamidou ,&nbsp;Burcu Beykal","doi":"10.1016/j.dche.2025.100218","DOIUrl":null,"url":null,"abstract":"<div><div>Planning and scheduling are crucial components of enterprise-wide optimization (EWO). For the successful execution of EWO, it is vital to view the enterprise operations as a holistic decision-making problem, composed of different interconnected elements or layers, to make the most efficient use of resources in process industries. Among different layers of the operating decisions, planning and scheduling are often treated sequentially, leading to impractical solutions. To tackle this problem, integrated approaches, such as bi-level programming are utilized to optimize these two layers simultaneously. Nonetheless, the bi-level optimization of such interdependent and holistic formulations is still difficult, particularly when dealing with mixed-integer nonlinear programming (MINLP) problems, due to a lack of effective algorithms. In this study, we employ the Data-driven Optimization of bi-level Mixed-Integer NOnlinear problems (DOMINO) framework, a data-driven algorithm developed to handle single-leader single-follower bi-level mixed-integer problems, to solve single-leader multi-follower planning and scheduling problems subject to MINLP scheduling formulations. We apply DOMINO to the continuous production of multi-product methyl methacrylate polymerization process formulated as a Traveling Salesman Problem and demonstrate its capability in achieving near-optimal guaranteed feasible solutions. Building on this foundation, we extend this strategy to solve a high-dimensional and highly constrained nonlinear crude oil refinery operation problem that has not been previously tackled in this context. Our study further evaluates the efficacy of using local, NOMAD (Nonlinear Optimization by Mesh Adaptive Direct Search), and a global data-driven optimizer, ARGONAUT (AlgoRithms for Global Optimization of coNstrAined grey-box compUTational), within the DOMINO framework and characterize their performance both in terms of solution quality and computational expense. The results indicate that DOMINO-NOMAD consistently achieves superior performance compared to DOMINO-ARGONAUT by identifying lower planning costs and generating more feasible solutions across multiple runs. Overall, this study demonstrates DOMINO’s ability to optimize production targets, meet market demands, and address large-scale EWO problems.</div></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"14 ","pages":"Article 100218"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277250812500002X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Planning and scheduling are crucial components of enterprise-wide optimization (EWO). For the successful execution of EWO, it is vital to view the enterprise operations as a holistic decision-making problem, composed of different interconnected elements or layers, to make the most efficient use of resources in process industries. Among different layers of the operating decisions, planning and scheduling are often treated sequentially, leading to impractical solutions. To tackle this problem, integrated approaches, such as bi-level programming are utilized to optimize these two layers simultaneously. Nonetheless, the bi-level optimization of such interdependent and holistic formulations is still difficult, particularly when dealing with mixed-integer nonlinear programming (MINLP) problems, due to a lack of effective algorithms. In this study, we employ the Data-driven Optimization of bi-level Mixed-Integer NOnlinear problems (DOMINO) framework, a data-driven algorithm developed to handle single-leader single-follower bi-level mixed-integer problems, to solve single-leader multi-follower planning and scheduling problems subject to MINLP scheduling formulations. We apply DOMINO to the continuous production of multi-product methyl methacrylate polymerization process formulated as a Traveling Salesman Problem and demonstrate its capability in achieving near-optimal guaranteed feasible solutions. Building on this foundation, we extend this strategy to solve a high-dimensional and highly constrained nonlinear crude oil refinery operation problem that has not been previously tackled in this context. Our study further evaluates the efficacy of using local, NOMAD (Nonlinear Optimization by Mesh Adaptive Direct Search), and a global data-driven optimizer, ARGONAUT (AlgoRithms for Global Optimization of coNstrAined grey-box compUTational), within the DOMINO framework and characterize their performance both in terms of solution quality and computational expense. The results indicate that DOMINO-NOMAD consistently achieves superior performance compared to DOMINO-ARGONAUT by identifying lower planning costs and generating more feasible solutions across multiple runs. Overall, this study demonstrates DOMINO’s ability to optimize production targets, meet market demands, and address large-scale EWO problems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信