An approach to hybrid modelling in chromatographic separation processes

IF 3 Q2 ENGINEERING, CHEMICAL
Foteini Michalopoulou , Maria M. Papathanasiou
{"title":"An approach to hybrid modelling in chromatographic separation processes","authors":"Foteini Michalopoulou ,&nbsp;Maria M. Papathanasiou","doi":"10.1016/j.dche.2024.100215","DOIUrl":null,"url":null,"abstract":"<div><div>Chromatographic separation process models are described by nonlinear partial differential and algebraic equations, often leading to high computational cost that limits their applicability in real-time applications. To address this, in this work we propose a hybrid modelling approach that integrates artificial neural networks with process knowledge to describe the system nonlinear dynamics. Specifically, the separation isotherm is maintained in its mechanistic form, while the need for spatial discretisation is eliminated, reducing computational effort by 97 % in the open-loop simulation. The resulting hybrid model relies solely on experimentally measurable variables and performs well both in interpolation and extrapolation tests. It is further utilised within a process optimisation framework, for the maximisation of process yield and product purity. The results demonstrate that the hybrid model accurately captures the intricate dynamics of chromatographic separations while providing a computationally efficient alternative, making it an effective tool for development in industrial applications.</div></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"14 ","pages":"Article 100215"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508124000772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Chromatographic separation process models are described by nonlinear partial differential and algebraic equations, often leading to high computational cost that limits their applicability in real-time applications. To address this, in this work we propose a hybrid modelling approach that integrates artificial neural networks with process knowledge to describe the system nonlinear dynamics. Specifically, the separation isotherm is maintained in its mechanistic form, while the need for spatial discretisation is eliminated, reducing computational effort by 97 % in the open-loop simulation. The resulting hybrid model relies solely on experimentally measurable variables and performs well both in interpolation and extrapolation tests. It is further utilised within a process optimisation framework, for the maximisation of process yield and product purity. The results demonstrate that the hybrid model accurately captures the intricate dynamics of chromatographic separations while providing a computationally efficient alternative, making it an effective tool for development in industrial applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信