Applications of machine learning for modeling and advanced control of crystallization processes: Developments and perspectives

IF 3 Q2 ENGINEERING, CHEMICAL
Fernando Arrais R.D. Lima , Marcellus G.F. de Moraes , Amaro G. Barreto Jr , Argimiro R. Secchi , Martha A. Grover , Maurício B. de Souza Jr
{"title":"Applications of machine learning for modeling and advanced control of crystallization processes: Developments and perspectives","authors":"Fernando Arrais R.D. Lima ,&nbsp;Marcellus G.F. de Moraes ,&nbsp;Amaro G. Barreto Jr ,&nbsp;Argimiro R. Secchi ,&nbsp;Martha A. Grover ,&nbsp;Maurício B. de Souza Jr","doi":"10.1016/j.dche.2024.100208","DOIUrl":null,"url":null,"abstract":"<div><div>Crystallization is a separation method relevant to the production of medicines, food and many other products. An efficient crystallization process must obtain a product with the desired size, length, and purity. Therefore, models and control schemes are applied to achieve this goal. Artificial intelligence techniques, such as machine learning (ML), are applied for modeling and controlling these processes. The current review aims to present the use of ML for modeling and advanced control of crystallization processes. Considering modeling crystallization processes, this paper presents the advances and different uses of ML, such as neural networks, symbolic regression, and transformer algorithms. This review also presents the development of hybrid models combining ML with physical laws for crystallization processes. For the advanced control of crystallization processes, this review presents the development of advanced control strategies based on ML approaches, such as applying neural networks in a nonlinear model predictive controller and based on reinforcement learning. This work can be a relevant reference for the progress of the application of ML in the process systems engineering (PSE) to crystallization processes. It is also expected to encourage industry and academy to use these approaches for different crystallization processes.</div></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"14 ","pages":"Article 100208"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277250812400070X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Crystallization is a separation method relevant to the production of medicines, food and many other products. An efficient crystallization process must obtain a product with the desired size, length, and purity. Therefore, models and control schemes are applied to achieve this goal. Artificial intelligence techniques, such as machine learning (ML), are applied for modeling and controlling these processes. The current review aims to present the use of ML for modeling and advanced control of crystallization processes. Considering modeling crystallization processes, this paper presents the advances and different uses of ML, such as neural networks, symbolic regression, and transformer algorithms. This review also presents the development of hybrid models combining ML with physical laws for crystallization processes. For the advanced control of crystallization processes, this review presents the development of advanced control strategies based on ML approaches, such as applying neural networks in a nonlinear model predictive controller and based on reinforcement learning. This work can be a relevant reference for the progress of the application of ML in the process systems engineering (PSE) to crystallization processes. It is also expected to encourage industry and academy to use these approaches for different crystallization processes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信