{"title":"Learning possibilistic dynamic systems from state transitions","authors":"Hongbo Hu , Yisong Wang , Katsumi Inoue","doi":"10.1016/j.fss.2024.109259","DOIUrl":null,"url":null,"abstract":"<div><div>Learning from 1-step transitions (LF1T) has become a paradigm to construct a logical hypothesis of a dynamic system, such as a Boolean network, from its synchronized state transitions and background knowledge. While uncertain and incomplete information plays an important role in dynamic systems, LF1T and its successors cannot handle uncertainty modeled by possibility theory. This motivates our combination of inductive logic programming (ILP) and possibilistic normal logic program (poss-NLP) that applies to reasoning about uncertain dynamic systems. In this paper, we propose a learning task to learn a poss-NLP from given interpretation transitions and background knowledge. The sufficient and necessary condition for the existence of its solution is determined. We introduce an algorithm called <span>iltp</span> to learn a specific solution, which typically encompasses mass redundant rules. Additionally, we propose another algorithm called <span>sp-iltp</span> to identify global minimal solutions. Alongside theoretical correctness proofs, a synthetic experiment demonstrates the learning performance on six gene regulatory networks with possibilistic uncertainty. This work thus offers a rational framework for learning the dynamics of systems under uncertainty via poss-NLPs.</div></div>","PeriodicalId":55130,"journal":{"name":"Fuzzy Sets and Systems","volume":"504 ","pages":"Article 109259"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Sets and Systems","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165011424004056","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Learning from 1-step transitions (LF1T) has become a paradigm to construct a logical hypothesis of a dynamic system, such as a Boolean network, from its synchronized state transitions and background knowledge. While uncertain and incomplete information plays an important role in dynamic systems, LF1T and its successors cannot handle uncertainty modeled by possibility theory. This motivates our combination of inductive logic programming (ILP) and possibilistic normal logic program (poss-NLP) that applies to reasoning about uncertain dynamic systems. In this paper, we propose a learning task to learn a poss-NLP from given interpretation transitions and background knowledge. The sufficient and necessary condition for the existence of its solution is determined. We introduce an algorithm called iltp to learn a specific solution, which typically encompasses mass redundant rules. Additionally, we propose another algorithm called sp-iltp to identify global minimal solutions. Alongside theoretical correctness proofs, a synthetic experiment demonstrates the learning performance on six gene regulatory networks with possibilistic uncertainty. This work thus offers a rational framework for learning the dynamics of systems under uncertainty via poss-NLPs.
期刊介绍:
Since its launching in 1978, the journal Fuzzy Sets and Systems has been devoted to the international advancement of the theory and application of fuzzy sets and systems. The theory of fuzzy sets now encompasses a well organized corpus of basic notions including (and not restricted to) aggregation operations, a generalized theory of relations, specific measures of information content, a calculus of fuzzy numbers. Fuzzy sets are also the cornerstone of a non-additive uncertainty theory, namely possibility theory, and of a versatile tool for both linguistic and numerical modeling: fuzzy rule-based systems. Numerous works now combine fuzzy concepts with other scientific disciplines as well as modern technologies.
In mathematics fuzzy sets have triggered new research topics in connection with category theory, topology, algebra, analysis. Fuzzy sets are also part of a recent trend in the study of generalized measures and integrals, and are combined with statistical methods. Furthermore, fuzzy sets have strong logical underpinnings in the tradition of many-valued logics.