Xuemei Zhou , Evangelos Alexiou , Irene Viola , Pablo Cesar
{"title":"PointPCA+: A full-reference Point Cloud Quality Assessment metric with PCA-based features","authors":"Xuemei Zhou , Evangelos Alexiou , Irene Viola , Pablo Cesar","doi":"10.1016/j.image.2025.117262","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces an enhanced Point Cloud Quality Assessment (PCQA) metric, termed PointPCA+, as an extension of PointPCA, with a focus on computational simplicity and feature richness. PointPCA+ refines the original PCA-based descriptors by employing Principal Component Analysis (PCA) solely on geometry data; additionally, the texture descriptors are refined through a direct application of the function on YCbCr values, enhancing the efficiency of computation. The metric combines geometry and texture features, capturing local shape and appearance properties, through a learning-based fusion to generate a total quality score. Prior to fusion, a feature selection module is incorporated to identify the most effective features from a proposed super-set. Experimental results demonstrate the high predictive performance of PointPCA+ against subjective ground truth scores obtained from four publicly available datasets. The metric consistently outperforms state-of-the-art solutions, offering valuable insights into the design of similarity measurements and the effectiveness of handcrafted features across various distortion types. The code of the proposed metric is available at <span><span>https://github.com/cwi-dis/pointpca_suite/</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"135 ","pages":"Article 117262"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596525000098","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces an enhanced Point Cloud Quality Assessment (PCQA) metric, termed PointPCA+, as an extension of PointPCA, with a focus on computational simplicity and feature richness. PointPCA+ refines the original PCA-based descriptors by employing Principal Component Analysis (PCA) solely on geometry data; additionally, the texture descriptors are refined through a direct application of the function on YCbCr values, enhancing the efficiency of computation. The metric combines geometry and texture features, capturing local shape and appearance properties, through a learning-based fusion to generate a total quality score. Prior to fusion, a feature selection module is incorporated to identify the most effective features from a proposed super-set. Experimental results demonstrate the high predictive performance of PointPCA+ against subjective ground truth scores obtained from four publicly available datasets. The metric consistently outperforms state-of-the-art solutions, offering valuable insights into the design of similarity measurements and the effectiveness of handcrafted features across various distortion types. The code of the proposed metric is available at https://github.com/cwi-dis/pointpca_suite/.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.