Metric distortion of obnoxious distributed voting

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Alexandros A. Voudouris
{"title":"Metric distortion of obnoxious distributed voting","authors":"Alexandros A. Voudouris","doi":"10.1016/j.ipl.2025.106559","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a distributed voting problem with a set of agents that are partitioned into disjoint groups and a set of <em>obnoxious</em> alternatives. Agents and alternatives are represented by points in a metric space. The goal is to compute the alternative that <em>maximizes</em> the total distance from all agents using a two-step mechanism which, given some information about the distances between agents and alternatives, first chooses a representative alternative for each group of agents, and then declares one of them as the overall winner. Due to the restricted nature of the mechanism and the potentially limited information it has to make its decision, it might not be always possible to choose the optimal alternative. We show tight bounds on the <em>distortion</em> of different mechanisms depending on the amount of the information they have access to; in particular, we study full-information and ordinal mechanisms.</div></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"189 ","pages":"Article 106559"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020019025000031","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a distributed voting problem with a set of agents that are partitioned into disjoint groups and a set of obnoxious alternatives. Agents and alternatives are represented by points in a metric space. The goal is to compute the alternative that maximizes the total distance from all agents using a two-step mechanism which, given some information about the distances between agents and alternatives, first chooses a representative alternative for each group of agents, and then declares one of them as the overall winner. Due to the restricted nature of the mechanism and the potentially limited information it has to make its decision, it might not be always possible to choose the optimal alternative. We show tight bounds on the distortion of different mechanisms depending on the amount of the information they have access to; in particular, we study full-information and ordinal mechanisms.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Processing Letters
Information Processing Letters 工程技术-计算机:信息系统
CiteScore
1.80
自引率
0.00%
发文量
70
审稿时长
7.3 months
期刊介绍: Information Processing Letters invites submission of original research articles that focus on fundamental aspects of information processing and computing. This naturally includes work in the broadly understood field of theoretical computer science; although papers in all areas of scientific inquiry will be given consideration, provided that they describe research contributions credibly motivated by applications to computing and involve rigorous methodology. High quality experimental papers that address topics of sufficiently broad interest may also be considered. Since its inception in 1971, Information Processing Letters has served as a forum for timely dissemination of short, concise and focused research contributions. Continuing with this tradition, and to expedite the reviewing process, manuscripts are generally limited in length to nine pages when they appear in print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信