{"title":"Transit dark energy models in Hoyle–Narlikar gravity with observational constraints","authors":"Dinesh Chandra Maurya","doi":"10.1016/j.dark.2024.101782","DOIUrl":null,"url":null,"abstract":"<div><div>We discover the cosmic acceleration and physical characteristics of dark energy models in Hoyle–Narlikar’s theory of gravity with observational constraints. We identify analytical solutions for the modified field equations of a barotropic fluid source within a flat Friedmann–Lemaitre–Robertson–Walker (FLRW) spacetime metric, and subsequently apply observational constraints using the cosmic chronometer (CC) Hubble data points and apparent magnitude from Pantheon SNe sample. We investigate the dark energy behavior of creation field theory using <span><math><mrow><mi>C</mi><mo>∝</mo><mi>t</mi></mrow></math></span>. We investigate the behavior of scale factor <span><math><mrow><mi>a</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>, deceleration parameter <span><math><mrow><mi>q</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>, effective equation of state parameter <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></math></span>, and energy conditions over the cosmic time <span><math><mi>t</mi></math></span>. We also investigate causality and statefinder diagnostic for the model. We have found the value of Hubble constant <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>68</mn><mo>.</mo><msubsup><mrow><mn>9</mn></mrow><mrow><mo>−</mo><mn>2</mn><mo>.</mo><mn>7</mn></mrow><mrow><mo>+</mo><mn>3</mn><mo>.</mo><mn>1</mn></mrow></msubsup></mrow></math></span> Km/s/Mpc and matter density parameter <span><math><mrow><msub><mrow><mi>Ω</mi></mrow><mrow><mi>m</mi><mn>0</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>280</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>086</mn></mrow></math></span> for barotropic fluid <span><math><mrow><mn>0</mn><mo>≤</mo><mi>ω</mi><mo><</mo><mn>1</mn></mrow></math></span> with dark energy density parameter <span><math><mrow><msub><mrow><mi>Ω</mi></mrow><mrow><mi>C</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>72</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>014</mn></mrow></math></span>. We found a constraint on creation-field coupling constant <span><math><mrow><mi>f</mi><mo>></mo><mfrac><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mn>3</mn><mi>ω</mi><mo>)</mo></mrow><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>2</mn></mrow></msubsup></mrow><mrow><mn>4</mn><mi>π</mi><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>ω</mi><mo>)</mo></mrow></mrow></mfrac></mrow></math></span> for transit phase accelerating universe. We found the transition age <span><math><mrow><msub><mrow><mi>t</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>=</mo><mn>6</mn><mo>.</mo><mn>9</mn><mo>,</mo><mspace></mspace><mn>6</mn><mo>.</mo><mn>7</mn></mrow></math></span> giga years with transition redshift <span><math><mrow><msub><mrow><mi>z</mi></mrow><mrow><msub><mrow><mi>t</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>595</mn><mo>,</mo><mspace></mspace><mn>0</mn><mo>.</mo><mn>603</mn></mrow></math></span> along two observational datasets, respectively. For two datasets, we found the effective EoS parameter in the range <span><math><mrow><mo>−</mo><mn>1</mn><mo>≤</mo><msub><mrow><mi>ω</mi></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub><mo><</mo><mi>ω</mi></mrow></math></span> with present values <span><math><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi><mn>0</mn></mrow></msub><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>71</mn><mo>,</mo><mspace></mspace><mo>−</mo><mn>0</mn><mo>.</mo><mn>72</mn></mrow></math></span>, respectively. We have found a singularity free model in this creation-field theory.</div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"47 ","pages":"Article 101782"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686424003650","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We discover the cosmic acceleration and physical characteristics of dark energy models in Hoyle–Narlikar’s theory of gravity with observational constraints. We identify analytical solutions for the modified field equations of a barotropic fluid source within a flat Friedmann–Lemaitre–Robertson–Walker (FLRW) spacetime metric, and subsequently apply observational constraints using the cosmic chronometer (CC) Hubble data points and apparent magnitude from Pantheon SNe sample. We investigate the dark energy behavior of creation field theory using . We investigate the behavior of scale factor , deceleration parameter , effective equation of state parameter , and energy conditions over the cosmic time . We also investigate causality and statefinder diagnostic for the model. We have found the value of Hubble constant Km/s/Mpc and matter density parameter for barotropic fluid with dark energy density parameter . We found a constraint on creation-field coupling constant for transit phase accelerating universe. We found the transition age giga years with transition redshift along two observational datasets, respectively. For two datasets, we found the effective EoS parameter in the range with present values , respectively. We have found a singularity free model in this creation-field theory.
期刊介绍:
Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact.
The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.