Surface-enhanced Raman spectroscopy combined with chemometrics for quantitative analysis and carcinogenic risk estimation of polycyclic aromatic hydrocarbons in water with complex matrix

IF 3.7 2区 化学 Q2 AUTOMATION & CONTROL SYSTEMS
Rongling Zhang , Mengjun Guo , Maogang Li , Hongsheng Tang , Tianlong Zhang , Hua Li
{"title":"Surface-enhanced Raman spectroscopy combined with chemometrics for quantitative analysis and carcinogenic risk estimation of polycyclic aromatic hydrocarbons in water with complex matrix","authors":"Rongling Zhang ,&nbsp;Mengjun Guo ,&nbsp;Maogang Li ,&nbsp;Hongsheng Tang ,&nbsp;Tianlong Zhang ,&nbsp;Hua Li","doi":"10.1016/j.chemolab.2024.105293","DOIUrl":null,"url":null,"abstract":"<div><div>Polycyclic aromatic hydrocarbons (PAHs) as a kind of persistent organic pollutants have high teratogenic, carcinogenic, mutagenic properties, as well as high octanol/water partition coefficient and sediment/water partition coefficient, causing serious threat to human health and water environment. In this study, the feasibility of Surface-enhanced Raman spectroscopy (SERS) technology combined with chemometrics for quantitative analysis and carcinogenic risk estimation of PAHs in water with complex matrix was explored. Firstly, 36 water samples from lake, tap, and distilled water were prepared, and then nano-silver particles (Ag NPs) were mixed with samples. The integrated strategy of spectral preprocessing was adopted to remove spectral interference, and variable selection algorithm was used to extract the information effectively, thus improving the prediction performance of the random forest (RF) calibration model for PAHs quantitative analysis and carcinogenic risk. The final results indicated that RF combined with spectral preprocessing integration strategy and variable selection had better predictive performance compared with the Raw-RF model. For phenanthrene (Phe) and benzo[<em>a</em>]anthracene (BaA) analysis, the optimal calibration model was WT-SG-SiPLS-VIM-RF (Phe: mean relative error of prediction (MRE<sub>p</sub>) = 0.0646, coefficient of determination of prediction (R<sup>2</sup><sub>p</sub>) = 0.9658; BaA: MRE<sub>p</sub> = 0.0949, R<sup>2</sup><sub>p</sub> = 0.9537). SG-WT-SiPLS-VIM-RF model (MRE<sub>p</sub> = 0.0992, R<sup>2</sup><sub>p</sub> = 0.9551) showed a better predictive performance for fluoranthene (Flu). WT-SG-VIM-RF model (MRE<sub>p</sub> = 0.0902, R<sup>2</sup><sub>p</sub> = 0.9409) showed excellent performance for assessing the carcinogenic risk of PAHs. Therefore, the combination of SERS technology and chemometrics provides a new approach for analyzing PAHs.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"257 ","pages":"Article 105293"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924002338","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Polycyclic aromatic hydrocarbons (PAHs) as a kind of persistent organic pollutants have high teratogenic, carcinogenic, mutagenic properties, as well as high octanol/water partition coefficient and sediment/water partition coefficient, causing serious threat to human health and water environment. In this study, the feasibility of Surface-enhanced Raman spectroscopy (SERS) technology combined with chemometrics for quantitative analysis and carcinogenic risk estimation of PAHs in water with complex matrix was explored. Firstly, 36 water samples from lake, tap, and distilled water were prepared, and then nano-silver particles (Ag NPs) were mixed with samples. The integrated strategy of spectral preprocessing was adopted to remove spectral interference, and variable selection algorithm was used to extract the information effectively, thus improving the prediction performance of the random forest (RF) calibration model for PAHs quantitative analysis and carcinogenic risk. The final results indicated that RF combined with spectral preprocessing integration strategy and variable selection had better predictive performance compared with the Raw-RF model. For phenanthrene (Phe) and benzo[a]anthracene (BaA) analysis, the optimal calibration model was WT-SG-SiPLS-VIM-RF (Phe: mean relative error of prediction (MREp) = 0.0646, coefficient of determination of prediction (R2p) = 0.9658; BaA: MREp = 0.0949, R2p = 0.9537). SG-WT-SiPLS-VIM-RF model (MREp = 0.0992, R2p = 0.9551) showed a better predictive performance for fluoranthene (Flu). WT-SG-VIM-RF model (MREp = 0.0902, R2p = 0.9409) showed excellent performance for assessing the carcinogenic risk of PAHs. Therefore, the combination of SERS technology and chemometrics provides a new approach for analyzing PAHs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
7.70%
发文量
169
审稿时长
3.4 months
期刊介绍: Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines. Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data. The journal deals with the following topics: 1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.) 2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered. 3) Development of new software that provides novel tools or truly advances the use of chemometrical methods. 4) Well characterized data sets to test performance for the new methods and software. The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信