{"title":"Kinematics and performance analysis for single-loop deployable polygonal mechanisms based on deployable paths","authors":"Hao Chen , Gaohan Zhu , Weizhong Guo , Zhenghao Weng , Caizhi Zhou , Mingxuan Wang","doi":"10.1016/j.mechmachtheory.2024.105907","DOIUrl":null,"url":null,"abstract":"<div><div>Deployable polygonal mechanisms (DGMs) are widely used in various fields; however, their performance evaluation remains challenging due to limitations in existing indices. To address these shortcomings, this paper innovatively proposes several new evaluation indices for DGMs, aiming to improve the precision and comprehensiveness of performance analysis. Firstly, a velocity analysis method for single-loop DGMs based on deployable paths is introduced, eliminating the need to solve joint angle analytical expressions, reducing computational effort. Secondly, a method for calculating the transmission wrench screw of single-loop mechanisms is proposed. This method is applicable to overconstrained, non-overconstrained, and reconfigurable mechanisms, regardless of whether they possess a single or multiple degrees of freedom. Thirdly, an index for evaluating the deploying performance of <span><math><mi>n</mi></math></span>R DGMs that deploy into general planar polygons is developed, along with an algorithm for calculating folding length. Furthermore, novel evaluation indices for deploying<span><math><mo>/</mo></math></span>folding performance in various application scenarios, motion<span><math><mo>/</mo></math></span>force transmission performance, and transmission ratio stability are proposed. Finally, detailed analyses of deploying<span><math><mo>/</mo></math></span>folding performance, transmission ratio stability, global extreme velocity, global extreme stiffness, and motion<span><math><mo>/</mo></math></span>force transmission performance of <span><math><mi>n</mi></math></span>R DGMs are provided.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"206 ","pages":"Article 105907"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24003343","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Deployable polygonal mechanisms (DGMs) are widely used in various fields; however, their performance evaluation remains challenging due to limitations in existing indices. To address these shortcomings, this paper innovatively proposes several new evaluation indices for DGMs, aiming to improve the precision and comprehensiveness of performance analysis. Firstly, a velocity analysis method for single-loop DGMs based on deployable paths is introduced, eliminating the need to solve joint angle analytical expressions, reducing computational effort. Secondly, a method for calculating the transmission wrench screw of single-loop mechanisms is proposed. This method is applicable to overconstrained, non-overconstrained, and reconfigurable mechanisms, regardless of whether they possess a single or multiple degrees of freedom. Thirdly, an index for evaluating the deploying performance of R DGMs that deploy into general planar polygons is developed, along with an algorithm for calculating folding length. Furthermore, novel evaluation indices for deployingfolding performance in various application scenarios, motionforce transmission performance, and transmission ratio stability are proposed. Finally, detailed analyses of deployingfolding performance, transmission ratio stability, global extreme velocity, global extreme stiffness, and motionforce transmission performance of R DGMs are provided.
期刊介绍:
Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal.
The main topics are:
Design Theory and Methodology;
Haptics and Human-Machine-Interfaces;
Robotics, Mechatronics and Micro-Machines;
Mechanisms, Mechanical Transmissions and Machines;
Kinematics, Dynamics, and Control of Mechanical Systems;
Applications to Bioengineering and Molecular Chemistry