Inverse and forward kinematic analysis of a 6-DOF foldable mechanism with a circular rail (FoldRail mechanism)

IF 4.5 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Anton Antonov, Alexey Fomin, Sergey Kiselev
{"title":"Inverse and forward kinematic analysis of a 6-DOF foldable mechanism with a circular rail (FoldRail mechanism)","authors":"Anton Antonov,&nbsp;Alexey Fomin,&nbsp;Sergey Kiselev","doi":"10.1016/j.mechmachtheory.2024.105904","DOIUrl":null,"url":null,"abstract":"<div><div>This article considers an inverse and forward kinematic analysis of a recently proposed foldable parallel mechanism with a circular rail (FoldRail mechanism). The mechanism has six degrees of freedom and three RRRS kinematic chains. Here, R and S indicate revolute and spherical joints, respectively, and the first and third R joints of each chain are actuated. First, the paper presents an algorithm to find a closed-form solution to the inverse kinematic problem. The analysis shows there can be four different solutions for each kinematic chain. Next, the paper studies forward kinematics and develops an elimination-based approach to handle this problem. The proposed method relies on the vector convolution operation and avoids symbolic computations inherent to most other similar techniques. It is shown that the forward kinematics has up to 16 distinct solutions, corresponding to 16 different assembly modes of the mechanism. Numerical examples illustrate the developed techniques for both the inverse and forward kinematic problems. The proposed algorithms provide the basis for subsequent performance evaluation and design optimization, and they can be applied to other parallel mechanisms.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"206 ","pages":"Article 105904"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24003318","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This article considers an inverse and forward kinematic analysis of a recently proposed foldable parallel mechanism with a circular rail (FoldRail mechanism). The mechanism has six degrees of freedom and three RRRS kinematic chains. Here, R and S indicate revolute and spherical joints, respectively, and the first and third R joints of each chain are actuated. First, the paper presents an algorithm to find a closed-form solution to the inverse kinematic problem. The analysis shows there can be four different solutions for each kinematic chain. Next, the paper studies forward kinematics and develops an elimination-based approach to handle this problem. The proposed method relies on the vector convolution operation and avoids symbolic computations inherent to most other similar techniques. It is shown that the forward kinematics has up to 16 distinct solutions, corresponding to 16 different assembly modes of the mechanism. Numerical examples illustrate the developed techniques for both the inverse and forward kinematic problems. The proposed algorithms provide the basis for subsequent performance evaluation and design optimization, and they can be applied to other parallel mechanisms.
带圆轨的六自由度可折叠机构(folrail机构)运动学逆正分析
本文考虑了最近提出的一种具有圆形轨道的可折叠并联机构(folrail机构)的逆运动学和正运动学分析。该机构具有6个自由度和3条RRRS运动链。其中R和S分别表示转动关节和球面关节,每条链的第一个和第三个R关节被驱动。首先,提出了一种求解运动学逆问题的封闭解的算法。分析表明,每个运动链可以有四种不同的解。其次,本文研究了正运动学,并提出了一种基于消去的方法来处理这一问题。该方法依赖于向量卷积运算,避免了大多数其他类似技术固有的符号计算。结果表明,机构正运动学有多达16个不同的解,对应于机构的16种不同的装配方式。数值例子说明了已开发的反运动学和正运动学问题的技术。所提出的算法为后续的性能评估和设计优化提供了基础,并可应用于其他并联机构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanism and Machine Theory
Mechanism and Machine Theory 工程技术-工程:机械
CiteScore
9.90
自引率
23.10%
发文量
450
审稿时长
20 days
期刊介绍: Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal. The main topics are: Design Theory and Methodology; Haptics and Human-Machine-Interfaces; Robotics, Mechatronics and Micro-Machines; Mechanisms, Mechanical Transmissions and Machines; Kinematics, Dynamics, and Control of Mechanical Systems; Applications to Bioengineering and Molecular Chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信