A recursive method for determining long-period mesh stiffness of cylindrical gears considering real tooth surface deviations

IF 4.5 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Fengfeng Liu , Geng Liu , Lan Liu , Jingyi Gong
{"title":"A recursive method for determining long-period mesh stiffness of cylindrical gears considering real tooth surface deviations","authors":"Fengfeng Liu ,&nbsp;Geng Liu ,&nbsp;Lan Liu ,&nbsp;Jingyi Gong","doi":"10.1016/j.mechmachtheory.2024.105898","DOIUrl":null,"url":null,"abstract":"<div><div>A recursive method is proposed for determining long-period time-varying mesh stiffness (TVMS) of cylindrical gears, considering real tooth surface deviations. Due to variations in the real deviations of each gear tooth and the presence of hunting tooth pairs, the superposition of contact point deviations between the driving and driven gears results in a long period for the TVMS. A long-period recursive model of contact point deviation superposition is developed based on even mesh technique and tooth surface measurement technique. This model considers the matching relationships of contact elements and the forward and backward recursion relationships of each contact element over a long period. Furthermore, a loaded tooth contact analysis (LTCA) model with long-period superposition deviations is established, and a double-layer iterative algorithm is devised to solve for long-period TVMS and transmission error (TE). The validity of the proposed method is confirmed through tooth surface measurements and TE experiments. The effects of load, deviation superposition, and deviation size on long-period TVMS are investigated. Finally, the main frequency components in the TVMS spectrum that may cause low-frequency vibrations in gears are identified.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"206 ","pages":"Article 105898"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24003252","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A recursive method is proposed for determining long-period time-varying mesh stiffness (TVMS) of cylindrical gears, considering real tooth surface deviations. Due to variations in the real deviations of each gear tooth and the presence of hunting tooth pairs, the superposition of contact point deviations between the driving and driven gears results in a long period for the TVMS. A long-period recursive model of contact point deviation superposition is developed based on even mesh technique and tooth surface measurement technique. This model considers the matching relationships of contact elements and the forward and backward recursion relationships of each contact element over a long period. Furthermore, a loaded tooth contact analysis (LTCA) model with long-period superposition deviations is established, and a double-layer iterative algorithm is devised to solve for long-period TVMS and transmission error (TE). The validity of the proposed method is confirmed through tooth surface measurements and TE experiments. The effects of load, deviation superposition, and deviation size on long-period TVMS are investigated. Finally, the main frequency components in the TVMS spectrum that may cause low-frequency vibrations in gears are identified.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanism and Machine Theory
Mechanism and Machine Theory 工程技术-工程:机械
CiteScore
9.90
自引率
23.10%
发文量
450
审稿时长
20 days
期刊介绍: Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal. The main topics are: Design Theory and Methodology; Haptics and Human-Machine-Interfaces; Robotics, Mechatronics and Micro-Machines; Mechanisms, Mechanical Transmissions and Machines; Kinematics, Dynamics, and Control of Mechanical Systems; Applications to Bioengineering and Molecular Chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信