Robust survival model for the prediction of Li-ion battery lifetime reliability and risk functions

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Rasheed Ibraheem , Timothy I. Cannings , Torben Sell , Gonçalo dos Reis
{"title":"Robust survival model for the prediction of Li-ion battery lifetime reliability and risk functions","authors":"Rasheed Ibraheem ,&nbsp;Timothy I. Cannings ,&nbsp;Torben Sell ,&nbsp;Gonçalo dos Reis","doi":"10.1016/j.egyai.2024.100465","DOIUrl":null,"url":null,"abstract":"<div><div>Single-value prediction such as the End of Life and Remaining Useful Life is a common method of estimating the lifetime of Li-ion batteries. Information from such prediction is limited when the entire degradation pattern is needed for practical applications such as dynamic adjustment of battery warranty, improved maintenance scheduling, and battery stock management. In this research, a predictive, semi-parametric survival model called the Cox Proportional Hazards is proposed for the prediction of cell degradation in the form of survival probability (battery reliability) and cumulative hazard (battery risk) functions. Once this model is trained, the two functions can be obtained directly for a new cell without having to predict several cogent points. The model is trained on the first 50 cycles of only the voltage profile from either the charge or discharge data regime, implying that our methodology is data region agnostic. The signature method with both desirable mathematical and machine learning properties was adopted as a feature extraction technique.</div><div>The developed models are tested rigorously using application-driven strategies involving model robustness to the number of cycles of data required for model training and prediction, different fractions of training samples, and systematic data sparsity. The codes for modeling and testing are publicly available.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"19 ","pages":"Article 100465"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546824001319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Single-value prediction such as the End of Life and Remaining Useful Life is a common method of estimating the lifetime of Li-ion batteries. Information from such prediction is limited when the entire degradation pattern is needed for practical applications such as dynamic adjustment of battery warranty, improved maintenance scheduling, and battery stock management. In this research, a predictive, semi-parametric survival model called the Cox Proportional Hazards is proposed for the prediction of cell degradation in the form of survival probability (battery reliability) and cumulative hazard (battery risk) functions. Once this model is trained, the two functions can be obtained directly for a new cell without having to predict several cogent points. The model is trained on the first 50 cycles of only the voltage profile from either the charge or discharge data regime, implying that our methodology is data region agnostic. The signature method with both desirable mathematical and machine learning properties was adopted as a feature extraction technique.
The developed models are tested rigorously using application-driven strategies involving model robustness to the number of cycles of data required for model training and prediction, different fractions of training samples, and systematic data sparsity. The codes for modeling and testing are publicly available.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信